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Functions of Bounded Variation
1.1. Introduction:

Let f be a real-valued function defined on a subset S of R. Then f is said to be increasing (or

non-decreasing) on S if for every pair of points x and y in S,

x<y=fx)=fu)

If x <y= f(x) < f(y),then f is said to be strictly increasing on S. (Decreasing functions
are similarly defined.) A function is called monotonic on S if it is increasing on S or

decreasing on S.

If £ is an increasing function, then - f is a decreasing function. Because of this simple fact, in
many situations involving monotonic functions it suffices to consider only the case of

increasing functions.

Properties of Monotonic Functions

Theorem 1.2:

Let f be an increasing function defined on [a, b] and let o, X1 ....... Xn be

n+1 points such that a = Xo<x1<x2<...... <xn=b Then we have the inequality.
kil [ (4et) - f (%1 < f(0) =f (a).

Proof:

Let ' f ' be an increasing function defined on [a, b]
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Let Xo, X1, X2 ...... Xn be n+1 points
a = Xo<X1<X2<.... <Xn=Db

To prove that:XR21[ [f (%ct) - f (x)] < f(b) —f (@)
Let y1,y2,.....yn €[a, b] be points
such that a= xo < y1 < x1 <y2 <...< yk<Xk< Yk+1< .....<Yn<Xn=D
(ie.) foreach K e {1.2,..... n-1},
we have, Vi < X < Vi1
Let f (i) = lim_f(x) & f (x<*) = m f(x)
Since f is an increasing function,
f<f Xo)<f ()< f ()= f (Vi)
“ f (et) - f (V) = f (Xict) - f (%)
(i) f () = f () < f (Yiws) - f (W)

k=1l fOct) - f ()] < BRZE0f (Vi) - £y
=[f(y2) - Fyl + [ (ys) - £ (YT AL f(yn)- f (Yn0)]
= [f(yn) - f(yn0)]
“Xioal FOut) =f)] < f (yn) - £ (yo< £ (0) - f (a)
[~ f isincreasing. a<y= f ()< f (y1); yn<b= f (yn)< f (D)
Hence XRZ1[f(xct) - f ()1 < f (D) - f (a)
Theorem 1.3:
If f is monotonic [a, b], then the set of discontinuities of f is countable.
Proof:

[There are two cases to consider - both of which are analogous so we will only consider the

case when f is monotonically increasing]
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Let f be an increasing function on [a, b]

We note that a discontinuity occurs at x = [a, b]

when f(x-) # f(x+)

In particular, since ‘f* is an increasing function,

0 discontinuity occurs when f(x+) - f(x-) >0

There exists a natural number m>o0 such that 0 <1/m< f(x+)-f(x-)
Let Sm={x e (a,b) : f(x+) - f[x-) > 1/m + meN* }

Let X1 X2.....,xn-1 €Smsuch that x1<xz<....<xn1

Then x1,Xo,....,xn-1 are discontinuities of f such that their jump
fOwt+) - f (Xk-) >1/m

= Xko1 1/m <¥R2Tf (xet) = f(xee)

= <f(b)-f(a) (by theorem. 1.2)

=n-1<m[f(b)-f(a)]

=n <m [f(b) - f(a)] + 1

~The number of discontinuities "n' in Sy is bounded above.

-+ Sm must be a finite set of discontinuities.

(i.e.), Sm is a countable set of discontinuities.

=~ For all discontinuities x e(a, b), there exist m eN™ such that
f(x+)- f(x-) > ym, the set of all discontinuities of fon (a, b) is Uj—; S
Each S, is a countable set

s Upm=1Sm IS countable

Hence f has at most a countably infinite number of discontinuities.
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Functions of Bounded Variation

Definition 1.4:

If [a, b] is a compact interval, a set of points P = {Xo, X1, X2,....,xn}, satisfying the inequalities a

= Xo<X1<.....<xn1< Xn = b, is called a partition of [a, b]. The interval [x«.1,x] is called the k™"

sub interval of P and we write AXk= Xk - Xk-1
Dre1 AX= DR o g Xk - X1 = (X1X0) (X2-X) F v v e e +(Xn-Xn-1) =Xn-Xo =b-a
k=1 Axx =b-a. The collection of all partitions of [a, b] will be denoted by
» [a, b]
Definition 1.5:
Let f be defined on [a, b]. If P = {Xo,X1,X2,....,xn} is a partition of [a, b],
write Afk = f(xk) - f(xk-1), fork=1,2 ,......, n
If there exist a positive number M € Y2_, |Afi|I<M
for all partitions of [a, b], then f is said to be of bounded variation on [a, b].
Theorem 1.6:
If f is monotonic on [a, b], then f is of bounded variation on [a, b].
Proof:
Let f be an increasing function on [a, b]
Let P ={a=xo, X1, X2, ...., Xn= b} be a partition of [a, b]
Then Afk = f(x) - f(xk-1), for all k=1,2 ..., n
Now
Yr_Afls =XR_.fi (fisincreasing)
= Zk=1[F (X0 — f(xic1)]
=[f(x1)- f(xo)] + [f(x2) — f(x1)] + - + [F(xn) - f(x-1)]
= f(xn)-f(X0) < f(b) -f(a)
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Let M=1f(b) -f(@) >0

Yr=1lAfi|< M, M>0

Hence f is of bounded variation on [a, b]

Theorem 1.7:

If f is continuous on [a, b] and if f'exists and is bounded in the interior, say
|f" (x)|<A for all x in (&, b), then f is of bounded variation on [a, b].

Proof:

Let f be continuous on [a, b] and f' exists and bounded in (a, b)

(i.e) |[f'(x)|<Aforall xe (a,b).

Let p = {a=Xo, X1, X2, ...., Xn=Db} be a partition of [a, b]

Then Axk =Xk~ Xk-1 & Afk =f(Xi)- f(Xk-1) Since 'f' is continuous on [a, b] & f' exists in (a,b) & by

mean value theorem,
foxi- f(Xi1) = f/(t) (Xi-Xir) for all te & (X1, %) e (1)
TO prove: f is of bounded variation on [a, b]
Now, Y7_|Afil =Lk=1[f (%) - f(x1)|
=Di=1Af kXX
=A. Y7 - (KkXk-1)
=A{(X1-Xo] + [X2-X1] +......+[Xn-Xn-1]}
=A. (Xn-Xo)
=A. (b-a)
k=1 |Af|< 4. (b-a)
Let M = A (b-a) >0

=1 |Af| <M, M>0 Hence f is of bounded variation on [a,b]
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Theorem 1.8:

If f is of bounded variation on [a, b], say X7, |Afc|< M for all partitions of [a, b], then f is
bounded on [a, b] In fact, |f(x)< |f(a)] + M for all x in [a, b]

Proof:

Let f be of bounded variation on [a, b]

(ie.) X k=, |Af/< M for all partitions of [a, b]
3o ) -fxey)| <M €))
Consider the partition P= {a,x,b} for all xe [a, b]
By (1), we get,

|[F(x) - f@II+I[F()- f)]| <M

= [f(x) - f(@)| <M (+1f)-f(@)| < [f(x)+(@)] +If(b)-F()I)
= |[fX)] - f@l] <M (= Ix-y[=lx[-IylD)
= [f()] - [f@|< M (+x<lx])

= |fx)|<[f(@)]+M forall x € [a, b]
Examples 1.9:
1.Construct a continuous function which is not of bounded variation

xcos (n/2x)if x #0

Consider the function f(x) :{ 0 ifx =0

Here f is continuous on [0,1]

Consider the partition into 2n sub intervals

P= {0, =, %-1 ....... 1/3,1/2,1

2n

We know that

0if x = —
|cos (7/2x)| = . 2"1_1 forallk=12,.....n
lifx= o
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Now,
|Af1|=|f(ﬁ)-f(0)| = [f(1/2n)- 0| = 1/2n
g 1 14 _ 1, _
(AR=[f(-1)-f()] = [0- .| = 1/2n
1 1 1
|Af3|=[f(——-2)-f(—-1)| = [f(—-2)- O] = 1/2n-2

[AR=[f(=-3)-f(--2)| = [0 - f(—-2)| = 1/2n-2

[Afnal=IFC)-FC)| = [(1/2)- 0 = -

Afarl=If(1)-)| = [0 - FQ)I =5

.y 1 1 1 1 1,1
PRt AR = —— +-+
=14+24 24, + 4=
2 3 n-1 n
. 1 1 1 1
(I-e-) Z}Z—llAfkl :1+E+§+ ........... +E+;

This is not bounded for all ‘n’ [Z;‘{;l% diverges]

In this example, f'exists in (0,1) but ' is not bounded on (0,1)
Hence f' is not of bounded variation on [0,1]

However, f’ bounded on any compact interval not containing the origin and hence f will be of

bounded variation on such an interval

2. Construct a continuous function which is of bounded variation.

x?cos(1/x) if x #0

Consider the function f(x) = { 0 ifx=0

Here f is continuous on [0,1]
Also, f' (0)=0
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For x£0, f'(X)= X+(-sin(2).-1/x*+cos(.).2x
(%) = sin X 1
f'(x) =sin " +2X C0S "
" ()| = | sin 1
If" (9] = | sin —+2cos
<|sin 3| + 2Jx|.|cos 3
X X
<1+2.1.1 =3
If" ()| <3
f" exists and is bounded in [0,1]

Hence f is of bounded variation on [0,1]

3. Boundedness of f is not necessary for f to be of bounded variation

Consider a function f(x)=x*

Let x<y

Now, x<y

Xl/3<yl/3

fx)<f(y)

f is a monotonic increasing function

Hence f is of bounded variation on every finite interval

1 _ 1
However f'(x) = 2x 2R =5 > ®asx—0

Total Variation

Definition 1.10:

Let f be of bounded variation on [a, b] and let > (P) denote the sum };7_, |Afy| corresponding

to the partition P= {Xo X1 X2,....,xn} Of [a ,b]. Then the number

Vi(a,b) =sup(Y.{P): PP [a,b]}, is called the total variation of f on the interval [a,b].
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Note 1.11:

* We write Vrinstead of Vs (a, b)

* Since f is of bounded variation on [a, b], then the total variation Vs is finite.
*Since each sum ) (P) >0, V>0

* Vs (a, b) =0 & fis constant on [a, b]

Theorem1.12:

Assume that f and g are each of bounded variation on [a, b]. Then so are their sum, difference,
and product. Also we have where V¢ & Vi+ Vg &

Vig < AVF +BVg, A =sup {|g(X)|:xe[a,b]}, B = sup {|f(X)|:xe[a,b]}
Proof:
Given that fand g are each of bounded variation on [a, b]
=there exist a positive numbers Mi, M2 > 0 such that for all partitions
P= {a=xoX1X2,.....xn= b}, we have
he1 |ATSM1, & XR_; |Af] <M:
(i.e) Xi=q | f(x)- f(xk-1)|<M1, XR_q 19(%k- 9(Xk-1)] < M2
()To prove: f+g is of bounded variation & Vg < Vit Vg
Let h=f+g
Now,
Yh=1 1A < XR_; [h(X)- h(Xk-1)|
= D=1 [(FrQ) (%) - (F+g) (Xic-)|
= Yie=1 | f(X)+ 9(x) - (F(xk-)+ g (Xk-1)|
= D=1 [~ k1) 1+ [9 (k) -9 (Xic-1)]]
< D=1 {If(xK)- F(Xi-1) | +1g (%) -9 (xe1) [}

< Yi=1 H(x)- fxc) I+ 25=1 [9()-9(Xk-1)]  ooeeennn. ()
14
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< Mi+M;
k=1 |AN< M1+M2

Let M=M1+M; >0

Hence h=f+g is of bounded variation on [a, b]

From equation (1)

k=1 [AhK< XR_ 1 |Afd+ Xk_q [AGK

Taking supremum, we get

=2>Vh < Vi+ Vg

(i.e.) Vg < Vit Vg

(i) To prove: f-g is of bounded variation & Vt.q < V¢ + Vg

Let h=f-g

Now, ¥7_, |Ahy < Xk=1h(x)- h(xc-1)|
< D=1 |(F9)(x)-(f-9) (k1))
= D=1 | f(X)- 9(xk) - (F(Xk-1)- 9(Xic-1)]
= D=1 [~ k1) 1+ [9 (k1) -9 (]|
< D=1 | )= F(Xa)[+]g(Xk)-g(Xk-1)]
<R | ) - F X)) [+ 2R 190)-g(Xir)] e )
< Mi1+M;

h=1 |AN< M1+ M2
Let M=M1+M_ >0
Hence h=f-g is of bounded variation on [a, b]

From equation (2)

k=1 AN < DR [0~ FOe)]1+2k =1 190)-g(Xi)|
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< Yk=1 |AT+ 2= 1AGK
Taking supremum, we get,
=Vh < Vi + Vg
(i.e.) Vig < Vit Vg
(iii)fg is of bounded variation & Vg < A Vi+ BV,
Let h=fg
Now
=1 lAhd < ko1 [N(X)- h(X«1)l
= Xk=1 |(fg)(xi)-(fg) (xw-1)]
= Yie=1 | T(X)-9(xi)-f(xk1). 9(x)+F(Xic-2). G(xk) - F(Xk1). GXica)|
= D=1 | [F(X)- f(xk-1)19 (X)) +[9(Xc-1)-g (X (k1))
= Zk=1 |[f(x)- fxk-0) 19 ()1 +1[9 (k) -G (X F(Xic-1)|

D=1 [[Fx)-Fxw-0) ]9 (Xi) [+2k = 1 [[9(Xk-1)-G(Xk]F(Xic-))

< AM:1+BM;

k=1 |Ah< AM1+BM;
Let M= AM:+BM;>0
Hence h=f.g is of bounded variation on [a,b]
From equation (3)
Zi=1lAhd <A Yo |Af+ B XR_; |AGK
Taking supremum, we get
=>Vh<A Vi+ B Vq

(|e) Vf,g SA Vf+ BVg
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Note:

If f and g are each of bounded variation on [a, b], then f/g need not be of bounded variation on
[a, b]

For, if f(x) — 0 as x—xo, then 1/f will not be bounded on any interval containing
=1/f cannot be of bounded variation on such an interval [by Theorem1.8]
=1/f need not be of bounded variation

Theorem 1.13:

let f be of bounded variation on [a, b] and assume that 'f’ is bounded away from zero; (i.e.)
Suppose that there exists a positive number 'm' such that o<m<|f(x)| for all a in [a, b]. Then

g=1/f is also of bounded variation on [a,b], and Vg <Vi/m?
Proof:
Let f be of bounded variation on [a, b]
=there exist a positive number K>0 such that for all partition
P={a =x1, X2, .... Xn=b},
we have Y 7_; |Ahg<K
r=q | f(Xk) - f(xk1) €K
Assume f is bounded away from zero

(i.e.) there exist a positive number ‘m’ such that 0<m<|f(x)| for all xe[a,b]

=

1 1
< =
o = m < 0 forall xe[a,b]

To prove that: 1/f is of bounded variation
Let g=1/f
Now,

=1 1Ak = Xje=1 19(XK)- 9(Xi)|

— 3y 1 1
= _1 | =(Xk)- =(Xk-
k—1|f( k) f(kl)l
17
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— | _r ;|
k=11fx)  flk-1)
—ym |f<xk_1>— f(xk)|

k=11 f (o) f(oge—1)

< K/m?
Let M = K/m?>0
k=100 =M

~g= 1/f is of bounded variation on [a, b]
From1,Y?_ |Agd < Um?Y7R_, |Afy
Taking supremum, we get,

Vg <1/m?. Vs

(i.e.) Vg< Vim?

Additive property of Total variation
Theorem 1.14:

Let f be of bounded variation on [a b] and assume that ce[a,b]. Then f is of bounded variation

on [a, c] and on [c, b] and we have

Vi (a, b) = V¢ (a, ¢) + Vs (C, b).

Proof:

Let f be of bounded variationon[a,b] ... (1)
Let ce(a,b)

First, to prove f is of bounded variation on [a, c] & on [c, b]

Let P: = { a=Xo,X1,..., Xn=C} €P [a, C]

P.={ ¢ =yo,Y1,....ym=b}e P [c,b]

Then P = P:UP2 = { a =x0,X4,..., Xn= C== Yo,Y1,....ym=D} e P[a,b]

From equation (1), we get,

18
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> (P)<M for all M>0
Now, Clearly,
Y (P) <Y (P) & Y.(P2) <Y(P)
Y(P)M & Y (P2) <M for all M>0
=~ fis of bounded variation on [a, c] & on [c, b]
Second, to prove: Vi(a, b) = Vi(a, c) + Vq (c, b)
(i.e.) To Prove: V¢(a, b) < V¢(a, c) + Vs (c, b) & Vs (a, b) > Vy(a,c) +V (c, b)
Now, We can write
2.(P1) +2(P2) =X(P)< Vi(a, b)
2.(P1) +2(P2) < V(a, b)
Vi(a, ) +Vi(c, b) <Viab) ...l (3)
To obtain the reverse inequality,
Let P={Xo,X1,X,....xn} €P [a,b]
~ P is a partition of [a,b] & ce [a,b], then there exist k such that Xx-1<c<xk
Define a new partition
Po = { a = Xo0,X1,X2,....Xk-1,C,Xks - . ... ... xn=b} €P [a,b]
Let P1 = { a = Xo,X1,X,....xk-1,C} € [a, c] be a partition on [a, c] &
Let P2 = {c,Xk,Xk+1,........Xn=D} €P [c, b] be a partition on [c, b]
Then Po=P1UP>
Now, we have
2(P) <% (Po)
=2(P) +2(P2)
(ie.) 2(P) < 2(Py) +2(P2)
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Taking supremum, we get

Vi(a, b)<Vi(a,c) +Vi(c,b) ... (4)
From equation (3) & (4),

Vs(a, b) = Vs(a, c) + Vs (c, b)

Total Variation on [a, x] as a function of ""x"".
Theorem 1.15.

Let f be of bounded variation on [a, b]. Let V be defined on [a, b] as follows:
V(X) = V¢(a, X) ifa<x <b, v(a) = 0.

Then, (i) V is an increasing function on [a, b]

(i) V-fis an increasing function on [a, b]

Proof:

Let f be of bounded variation on [a, b]

Let V: [a,b] — R such that

0 ifx=a
V(X) :{vf(a,x) ST L 1)

()To prove: V is an increasing function on [a, b]

Let X, y €[a,b]

Leta<x<y<b

To prove: V(x)< V(y)

Now, a<x<y

= V;(a y) = Vs(a x) + Vi(X, y) [ -~ by Theorem 1.14]
=>V(y) = V(X) + Vi (X, y) [ by equation (1)]

> V() - V) >Vi(x, y) [Ve0]

(i.e.) V(y) - V(x) >0
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=SV(x) < V(y)
V is an increasing function on [a, b].
ii) To prove: V-f is an increasing function on [a, b]
Let X, ye [a,0] & a<x<y<b
To prove: (V-f) (x) <(V-) (¥)
(i.e.) To prove V(x) - f(x) < V(y) - f(y)
(i.e.) To prove f(y)- f(x) < v(y)-V(x)
Now, V(y) - V(x) = Vi (a,y) - V(@ X)
=Vi(x, y) [+ a<x<y [ Vi (a, y) = Vi(a, X) + Vi (X, Y)]

(ie.) V(y) - V(X) =Vi(x, y)
Consider the partition p={x, y} € P[X, y]
This is the smallest partition on [x, y]
= Ve ({x, y}) = [f(y) - f(x)|
Now, we know that V(x, y) > Vi({XY3})
= V(y)-V(x) = [f(y)-f(x)|

>f(y) - f(x)
(i.e.) V(y)-V(x)=f(y) - f(x)
~(V-f) (x) <(V-f) (y)
Hence V-f is an increasing function on [a, b]

Note 1.16:
Let geR on [a,b] and define f(x) :f: g(t) dt if xe[a,b]
Then the integral f; |g(t)| dt is the total variation of 'f’ on [a, X].

[(i.e.) For some functions f, the total variation V¢ (a, x) can be expressed as an integral.]
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Proof:

Letge R

Let f(x) = [ g(t)dt if xe [a,b]

To prove: f; |g (t)|dt is the total variation of ' f” on [a, X]

(i.e.)To prove: Vi(a, x):f(f |g(®)]dt

Functions of Bounded Variation Expressed as the Difference of Increasing Functions

Theorem 1.17:

Let f be defined on [a, b]. Then f is of bounded variation on [a, b] if and if only f can be

expressed as the difference of two increasing functions.
Proof:

let f be defined on [a, b]

Let f be of bounded variation on [ab]

Let V:[a, b] > R

_ 0 ifx=a
V(X)_{Vf(a, x)ifa<x<bhb

Then, we write

f(x) = V(x) - [V(x) - f(x)]

f(x) = V(x) -(V-f) ()

By Theorem 1.15,

V and V-f are both increasing functions on [a, b]

=~ f can be expressed as the difference of two Increasing functions.
Conversely,

Suppose that f can be expressed as the difference of two increasing functions.

Let f =f ;- f 2 where f1 & T2 are increasing functions on [a, b]
22
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 f1 & T2 are increasing function on [a, b] & by Theorem1.6

f 1 & f 2 are of bounded variation on [a, b]

= f1 & f2is of bounded variation on [a, b] [+ by Theorem1.11]

(i.e.) fis a bounded variation on [a, b]

Note 1.18:

The above Theorem 1:17 holds if "Increasing” is replaced by strictly increasing"

The representation of a function of bounded variance as a difference of two increasing

functions is by no means unique.

If f = f1-f. where f1 &2 are increasing,

then f = (f1+q) - (f+g) where g is an arbitrary increasing function
We get a new representation of f

If'g" is strictly increasing, then the same will be true of fi+g and f-+g. Hence the Theorem1.17

holds if "increasing” is replaced by "strictly increasing".
Continuous Functions of Bounded Variation.
Theorem 1.19:

Let f be of bounded variation on [a, b]. If xe (a,b], let V(X) = Vs (a, X) and put VV(a)=0. Then

every point of continuity of f is also a point of continuity of V. The converse is also true.
Proof:
Let f be of bounded variation on [a, b]

0 ifx=a
Vi(a,x) ifa<x<bh

Let V(x) = {
Case(i)
Assume that ‘V’ is a continuous function

Given: €>0, there exist 6>0 such that |y-x|<d=|V(y)-V(X)|<e

To prove: f is a continuous function
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By Theorem 1.15,
=V & V-f is a monotonic increasing function
=>V(x+) & V(x-) exist for each xe (a,b)
By Theorem 1.17,
f is monotonic
= f(x+) and f(x-) exist for each x € (a,b).
Leta<x <y<h.
Then by the definition of V¢ (X, y)
O<If(y)-f(x)l <V (X, y)

<Vi(a, y) - Vi(a, X)

= V(y)-V(x)
= 0<[f(y) - f(x)] < V(y) - V(X)

<|V(y) - V(¥
<g

If(y) - f(x)l <&
= f is a continuous function
=~ A point of continuity of “V’ is a point of continuity of f.
Case(ii)
Given f is a continuous function.
To prove, V is a continuous function
Let f be continuous at ce (a,b) ¢
=given £>0 and 6>0 such that |x-c|<d

SIFX)-FY)|<e2 e, (1)
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fenowe owEr

For this ‘€’, there exist a partition P of [c, bi, sa
P={c=xo,X1,....xn=b} such that X.7_, |Afi[>Vs(c, b)-e/2  ......... ()
Assume that 0<|x1-Xo|< &
= [f(x1)- f(xo)| < &/2 [f is continuous] vereen(3)
From equation (2)
Vi(c, b) - el2 <37 _; |Afil

= [Af [+ 2R |A S|

= [f(Xa) - f(x0) +Xie=1 [Afk]

< gl2 + Vi(x1,b) [-by equation (3) & Definition of V]
Vi(c, b) - £/2 < &2 + Vi(x1,b)

Vi(c, b)-Vi(xw,b) < &/2 +< &/2

<g

Vi(c, b)-Vi(xy,b)<e 4
Let |x1-C|<d

Now,

V(x)-V(c)  =Vi(a x1) - Vi (a, ¢)
= Vi (C, X1)
= Vi (C, b) - Vi(xa, b)
<eg (by equation (4) )
2V(x1)-V(0)< &
(ie)x-cl< 8 = [V(x1)-V(c)<e
2V(c+) = V(c)

Similarly, V(c-)=V(c)
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~ V is continuous at a point ¢

Hence V is a continuous function.

Thus a point of continuity of f is a point of continuity of V.
Theorem 1.20:

Let f be continuous on [a, b]. Then f is of bounded variation on [a, b] if and only if f can be

expressed as the difference of two increasing continuous functions.
Proof:

Combining Theorem 1.19 with 1.17, we can state 1.20.

Absolute and Conditional Convergence

Definition 1.21:

A series Y an is called absolutely convergent if > Jas| converges. It is called conditionally

convergent if > an converges but > |an| diverges.
Theorem 1.22:

Absolute convergence of Y a, implies convergence
Proof:

Given Y aj is absolute convergence

(i.e.) Ylan| converges

To prove: ) a, converges

By Cauchy's condition for convergent series,

[The series X..o_; a,, converges if and only if for all >0, there exist NeN such that if n > N
then
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We know that,

|an+1+an+2+ ....... +an+p| < |an+1|+|an+2|+ ....... +|an+p|

<e& (byequation (1))
s|ansitaneot.. ... +an+p| < €
Hence ) an converges.
Note 1.23:

The converse of the above Theorem is not true.

—1)nt+1 | )
For example, Z,‘fﬂ% is the convergent series.

(_1)1’l+1
n

Cvw 1. .
| = n=1, IS not a convergent series.

But Z%o=1 |
Theorem 1.24:

_lanl+an

Let > an be a given series with real-valued terms and define pn= o qn=|a"|2_a". (n=1,2......)

Then

(i) If Y an is conditionally convergent, both < Y'pn & Y gndiverge

(ii) If Y'|an| converges, both Y pn and Y qn converges and we have
n=10n =Xn=1Pn"2n=19n

Proof:

Let > a, be a given series with real-valued terms

lan|+an |an|-an

Define pn= S O

_(apifa, =0 _{anifanZO
zpn_{ol_fan<0 e 7 P S— (1)

= P>0 & qn=>0
AlsO pn-Qn=an & pntgn=1las| ... (2)
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(1) Given Y an is conditionally convergent

=Y anconverges but Y |a| diverges ree(3)
To prove: Y pn& >.gn diverge

If > pn converges,

=>'qn converges (** gn = Pn-an)

If Y qn converges,

=pn converges (“'pn = gn +an)

Hence if > pn & > gn coOnverges, both Y pn & > qncOnverges
= >'pntY.qn CONVErges

[by Theorem1.22, let Y anand Y bn converges. Then Y (cantPan) converges. For all o, B &
> (aantPan) = oY an 3 bn]

which is a contradiction to equation (3)

Hence Y pn & Y.0n

(i) Given Y |an| converges

To prove: Y pn & Y gnconverge and Yo, @, =Dim—1 Pn-Dme1 qn
> |an| converges

=Y (pntQn) CONverges

=> pnt).qnCONVeErges

=> pn&)_qnCONVerges

Now, X771 an =Xn=1(Pn- Gn)

[by Theorem 1.22, let Y pnand > qn converges. Then Y (apntfqn) COnverges.
For all a, B & 3 (apntBdn) = apn +BXqn

el On =Xme1 Pn-2me1 qn
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Dirichlet's Test and Abel's Test

Theorem 1.25:

If {an} and {bn} are two sequences of complex numbers, define

An = aitart+...... +an Then we have the identity

Yim=1 Qb = Anbnvi— X7 Ay (brs1) — by)

Therefore Y7, a,bconverges if both the series. Y7_; Ax(by+1) — by) and the sequence

{Anbn+1} converge.
Proof:
Let {an} & {bn} be two sequences of complex numbers
Define Ar=a: +ax+.... +an
ak = Ax-Ax-1
Let Ao=0
Now,
2in=1aiby = Xk=1[Ax—Ak-1]bk
= Xk=1Akbk — Ln=1 Ax-1bx
= Yk=1 Axbr — Ln=1 Arbi 41 -Aobr +Anbns1
= 2k=1 A (bx — byyq) FAnbna
o Y1 Qb = Anbner — 2701 A (b1 — by)
Now,
n=1 by = lim Yk=1aiby
= Tlli_{g[Anbnﬂ — 2k=1Ak(bs1 — by)
Yin=1 ;b= Tlli_{{}o[Anan — Xie=1Ak(brs1 — by)

“{Anbn+1} & Y71 Ax(brs1 + by) Converge, by Theorem8.8
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>_. a,b, converges
Theorem1.26: (Dirichlet’s Test)

Let Y an be a series of complex terms whose partial sums form a bounded sequence. Let {bn}

be a decreasing sequence which converges to 0. Then > anbn converges
Proof:
Let Y an be a series of complex terms whose partial Sums form a bounded sequence.
Let A= artazt...... an
Given {An} bounded.
There exist M>0such that |Anl< M forallneN  ......... (1)
Let {bn} be a decreasing sequence which converges to 0
(i.e.)%ijgo b,=0 . (2)
From equation (1) & (2)
lim Apbp1=0
(i.e.) {Anbn+1} converges L (3)
It is enough to prove that > An (bn+1- bn) converges
Now,
Yn=1An(brea - bn) =X [An| (Dne1-bn)
< Y1 M.(bn+1 - bn) converges
= M.Y_; (bn-bn+1)
ne1An(bre1-bn)  <MLYT_; (bn-bn+1)
Let Sn = X1 (b - bk+1)= b1-bn+1

= lim Sn = lim bj_'bn+1: bl' 0= bl

n—-oo n—oo

-Ym=1( bn-bn+1) converges
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= M.Y -1 ( ba-bn+1) converges

By comparison test, we have

Y1 An(bn+1 - by) converges  ............ 4)
From equation (3) & (4)

~Anbn+1} & > An(bn+1- bn) converges

By Theorem 1.25,

> anbn converges.

Theorem 1.27:(Abel’s Test)

The series Y anbn converges if > an converges and if {bn} is @ monotonic convergent sequence.

Proof:

Given Y an converges and{bn} is a monotonic convergent sequence.
Let An=a1 + ax+.... +an

Y anp converges, then the sequence of partial sums

lim A, converges

n—-oo

=This sequence {An} bounded
=>M>0 such that : |As| <M for everyneN ......... (1)

{bn} is a convergent sequence & by equation (1),

lim A, b,,, COnverges .......... (2
n—-oo
Now,
n=1 [An(Drs1-br)| = X7q [Anl.|(bnea-bn)

< Xn=1 [M.|(Dr+1-b)|
<M Xy |(bnes-bn)|

?10=1 |An(bn+1'bn)| <M Z;}:l |(bn+1'bn)| .......... (3)
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Case(i)

{bn} is a monotonically increasing sequence
Y1 | bnwa - bl = X7 (Dnea-bn)
Slim %57, |orabo)] = by

(i.e.) Xp=1 |(on+1-b)| converges to -by

Case (ii)

{bn} is a monotonically decreasing sequence.
Y=t | bnea - b | = X5 (Drea-bn)

= lim X [(rercbo)] = by

(i.e.) 2= |(bn+1-bn)| converges to b:
In either case we see that the series
Y=y | bn+1 - ba| converges = M. Y77 | bn+1 - bn| converges.
By comparison Test,
=1 |An(bn+1-bn)|converges.
= Y1 |An(bn+1-bn)lconverges L 3)
From equation (2) and (3), by Theorem 1.25,
> anbn converges.
Rearrangements of Series
Definition 1.28:

Let f be a function whose domain is Z* and whose range is Z*, and assume that 'f' is one-one

on Z*. Let Y an and Y bs be two series such that by = af() for n=1,2,....
Then Y by is said to be a rearrangement of > an

( Z" = {1,2,3,..}, bn= afn) = a, = bf‘l(n))
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> an Is also a rearrangement of 3 by
Theorem1.29:

Let > an be an absolutely convergent series having sum S. Then every rearrangement of > an

also converges absolutely and has sum S.
Proof:
Let > an be an absolutely convergent series having Sum ‘S’
(i.e.) danconverges & |Yan| =S ....... (2)
Let f: Z*—Z" & assume that f is 1-1
Let ' bn be a rearrangement of > an
Define by = agn) for everyn=1,2,3,... ......... (2)
To prove: Y by converges absolutely and >b, = S
(i.e.) To prove: Y |bn| converges & > bn=S
Now,
|bil + Ibo|+ ......... + |bn| = laf)|Hare)| - . ... .. +|afm)|
= |ag|+|az|+......+|an|
<|az|[+az|+......+|an|
=Xm=1la| =S (by1)
a|ba+H|bo)+. .. ... |bn|<S
(i.e.) Y |bn| has bounded partial sum
= Y |bn| cOnverges
(i.e.) Y.bnconverges absolutely
Now, to prove > by, =S

Let th= bitb +....... + bn & Sn =arta+...... +an
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lISNI-IS|| = [Sn-S| < &/
=llag|+azl+..... Han|-(las+azl+. . .. Han[+Hansil+.....)[<el2
= |-(lan+a|+|anez|+....... )| <el2
=S¥t lanl<e2 (4)
Now,
It -S| = [tn -Sn + Sn-S|
<[to-Sn|+ [Sn-S|
“fto-S|<[ta-Sn[+ &2 (by3) ... (5)
Choose M so that {1, 2 ...., N} < {f(1) f(2), ......f(M)}

Then n>M = f(n) > N, and for such 'n' we have

|tn - SN| = |brt bot...... +bn- (a1 a2t ...... an) |
= |agy) + afe) t+........ + af(n)| - (artazt.....+an)|
= |artaxt...... +an - (a1 +az +....... +an)|
= |aN+1+aN+z+ ....... +an|
= |an+1| Han+2[t...... +|an]|

< |an+1| Han+2|t......

= YK=1 |an+k]
<el2 (by4)
Ata-Sal<el2 6)

Now, (5) = |tn - SN|<|tn-Sn|+ €/2

<¢gl2+¢/2 (by equation (6) )

-'-ltn - SN|< e
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Xe”k
Hence for all £>0, there exist M such that |t, - Sn|< € for all n>M

lim t,=S

n—oo
Riemann's Theorem on Conditionally Convergent Series:
Theorem 1.30:

Let Yan be a conditionally convergent series with real-valued terms. Let x and y be given
numbers in the closed interval [-o0,+o0], with x<y. Then there exists a rearrangement by Of

>an such that lim inft,=xand lim ¢, sup th =,
n—-oo

n—-oo

where ty = bitbat......+by

Proof:

Let Y an be a conditionally convergent series with real-valued terms.

Let -oo<x<y <o

Discarding those terms of a series which are zero does not affect its convergence or divergence.
Hence we might as well assume that no terms of > an are zero

Let Py denote the n™ positive term of Ya, &

Let -gn denote the n negative term of Y an.

Define pn= 'anl% & Qn= 'aan_a“ (n=1,2,3,....... )

= Pn= {a?) ifi];:nfoo and = o = {_o(l)nific];na; § ’
=pn >0 and qn >0

Sph+tgn=|an| &pn-gh=an ... (1)

Y an is conditionally convergent,

> an converges but > |anl diverges ... (2)

If Y pn converges & by 1, > gnCONnverges.

If Y qn converges & by 1, > pnconverges.
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(i.e.) both >'pn & > qncCONverges

=>pn & Y.qnCONvVerges

=Y |an| CONVerges.

Contradiction to equation (2)

Hence Y pn & > gn divergences.

Let {xn} &{yn} be two sequences of real numbers there exist

lim x,=x & lim y,=y with X, <yn, y1>0
n—->oo

n—-oo

Let (ki, 1) be the least positive integer there exist

p1+pat...... +pg, >y1 with y1>0

p1+pat...... TPk, Q102 oGy tDR, TR e +pr., >y &
p1+p2+ ...... +pK1'q1'q2'-----'Qr1+pK1+1+pKz+z+ ....... +pKZ qr1+1
—Qryyyerenes “Qr,<X2

These steps are possible because Y pn & Y.qnare both divergent series of positive terms. If the

process is continued in this way,

we obtain a rearrangement Y bn & Y an

Where Y br=p1+p2+t-...... Pk, 0102 oG DK PRy e Pk,
~Qry ey e (3)

Let th = bat+bo+...... +bn

To prove: lim infty,=xand lim ¢, supta =y,
n—-o0o

n—-oo

Let an and Bn denote the partial sum of equation (3) whose last terms are py & gq,,

respectively.

Since, p1tpa+t...... TPk, - Q102 om Gy DR T Pk, TPk, >Yn
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=p1+pot
=0n =< yntpg,
=0n- Yn= Pk,
=lan- Yn| < pg,, as an>Yn & pg, >0
Similarly,
[Bn- Yol < gy,
Y anis converges, an — 0 as n—oo
= pn—0 & g»—0 as n—w
= pg, 20 & q,,—0 asn—ow
Now, = pg, —0 asn—o
Given £>0, there exist a positive integer N such that
| P, | <el2 for all n>N
Again since yn —y as n—oo
Given £>0, there exist a positive integer N such that
[yn-y| <e/2 for all n>N»
Let N =max {Ni, N2}, Then
Jon- y| = o= Yntyn-Y|
< |an= Ynl+[yn-Y|
< Py HYnYl
< | P, |*1yn-yl
<el2+el2=¢

~lon-y| <eforalln>N
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But ‘¢’ was arbitrary, -.on—Yy
similarly, by the same argument we can prove that fn —x

Finally, it is clear that no number less than 'x’ or greater than 'y' can be sub sequential limit of

the partial sum of equation (3)

lim inft,=xand lim t, sup tn =y, where t, = bitba+.....+by
n—->oo

n—-oo
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Unit 11

The Riemann - Stieltjes Integral: Introduction - Notation - The definition of the Riemann -
Stieltjes integral - Linear Properties - Integration by parts- Change of variable in a Riemann -
Stieltjes integral - Reduction to a Riemann Integral — Euler’s summation formula -
Monotonically increasing integrators, Upper and lower integrals - Additive and linearity

properties of upper, lower integrals — Riemann’s condition - Comparison theorems.

2.1. Introduction

e Finding the slope of the tangent line to a curve is studied by a limit process known as
differentiation

e Finding the area of a region under a curve is studied by a limit process known as
integration.

e To find the area of the region under the graph of a positive function f defined on [a,b],
we subdivide the interval [a,b] into a finite number of subintervals, say n, the kth
subinterval having length Ax; and the sum X7_, f (xx)Ax; , where t;, € (xj_q, x) iS
an approximation to the area by means of rectangles.

e If the definite integral of a continuous function f as a function of its upper limit, we

write F(x) = f;f(t) dt.Then F'(x) = f(x).Hence differentiation and integration are

in inverse operations.
Notation 2.2:
e f,g, a B — Real-valued functions defined bounded on [a, b].

Definition 2.3: A partition P of [a, b], where a<b is a finite set P =
{a =xg,x1,%5,....x, =b} such that a=xo<x1 <, ..., <Xi-1 <Xi <,

ey <Xn = b

o Axp = Xp— Xg-1

e pla, b] = set of all partitions of [a, b]

e A partition P’ of [a,b] is said to be finer than (or a refinement of
YifP S p’

o Aap = a(xy) — a(xi_q) and Y7, Ax; = a(b) — a(a)
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=

e The mesh (or) norm of a partition P

is the length of the largest

subinterval of P. (i.e.) ||P|| = ke?ll,g.)fn}lxk — Xy |

e PSP =|PI=IPI
(ie) The refinement of a partition decreases its norm, but the

converse does not necessarily.
The Definition of the Riemann-Stieltjes Integral
Definition 2.4:

Let f, a be the real-valued functions defined on the closed interval [a,b]. Let

P={a=xx,xp,....x, = b}

be partition of [a,b] and let be a point in the

subinterval [x;_q1, x;]. Let Aay = a(x;) — a(xg_1). Then a sum of the
form S(P, f,a) = Xio, f (i )Axy  .......(1)

is called a Riemann-Stieltjes Sum of f with respect to a

The function f is said to be Riemann- Stieltjes Integral with respect to a on [a,b]
(ie) f € R(a) on [a,b]

Their exist A€ R having the following property:

For all € > 0, their exist a partition P, of [a,b] such that
For all partition P finer than P, (P, € P)

For every choice of the points tie [x,_1, xx], We have
Isp, f,a) —Al < e

(ie) lim B2, f(x)A%, = 4

If such on Ae R exists and uniquely determined, we say that the Riemann-

Stieltjes Integral exists and write

[, f da = [ f() da(x) = lim Ti_, £ (o)Ax, = A
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Note 1:

The function f and « referred to as the integrand and the integrator

respectively.
Note 2: Riemann Integral

When a(x) = x in the Riemann-Stieltjes Integral, then we get the Riemann

sum of f

SP,f) = Xk=1 f (ti) Axy

and |s(p, f) —A| <&

Then the function f is said to be Riemann Integrable on [a, b]

(ie) f € Rand write
[, f dx = [, fG) dx = lim T3_, f(xi)Ax, = A
Note:3

The numerical value of f; f(x) da(x) dependsonlyon f,a,a and b and does

not depend on the symbol x. This letter x is a dummy variable and may be

replaced be any other convenient symbol.

Linear Properties

Theorem 2.5: [Linearity of the Integrand of R-S Integral]
If f € R(a) and if g € R(a) on [a,b], then ¢, f + c,9 € R(a)

On [a, b] for any two constants ¢, and ¢, and we have

b b b
f(clf+c2g)da=c1ffda+czfgda
a a a

Proof:

Let f, g, a be real valued function defined on [a, b]
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LetP = {a = x9,%,,X3,....X, = b} € pEZz,b]
tk€ [Xx—1, xx] and Aoy = a(xp) — a(xXg-1).

Let € > 0 be given

Given f € R(a) and g € R(a)

Let c; and c, be two constants

To provec; f + c,g € R(a)

b b b
and [ (cif +c9)da=c [, fda+c, [ gda

Let h=c f +c,g9

Now f € R(a) = their exists 4 € R such that for all ¢ > 0 &; = ——

lc1l

>0,

their exists P, of [a,b] such that for all P finer than P, and tye [x,_q, Xi], We

have [S(P, f,a) — A| < & and

&

> 0 their

Also g € R(a) = their exists B € R such that for all ¢; =

2|cz|

exists P, of [a,b] such that for all P finer than P., and tye€ [xj_4, xx], We have

|S(P,g,a) —B| < &, andef;gda ...... ()
LetP, =P, UPR,

Then v P finer then P,, we have

|S(P,h,a) — (C1A + C,B)| =

n
Z h(t)Aay — (CLA + C,B)
k=1

_ z(cl f + Co9)(t)Day — (CLA + C,B)
k=1

= Z(le)(tk) Aak - ClA + z(czg)(tk) Aak _ CzB
k=1 k=1

42

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Gy (Z f(te) Aoy, — A) + G, (Z g(ti) Aay — B)
k=1 k=1

>t Aay — 4
k=1

< ¢l + |G,

n
z g(ty) Aay — B
k=1

= |C,|IS(P, f,a) — Al + |C,|IS(P, g, @) — B
< |Cile; +1C,le;

=il =+ 1Col 5~ (by equation (1) & (2))

2|Cq | 2|Cy|
=¢
S |S(P,le + ng, a) - (ClA + CzB)l <g

~Cif +Cg9 €R(a)

Also, [ (C,f + C,g)da = C,A + C,B

b
b b
.[(le+ng)da=le fda+C2f g da
a a
a

Theorem 2.6: [Linearity of the Integrator of R-S Integral]

If f € R(a) and f € R(B) on [a,b], then f € R(C,a + C,B) on [a, b] (for any
two constants C; and C,) and we have

[ fd(Ca+CpY=C [, fda+C, [, fdB

Proof:

Let f, @, B be real- valued functions defined on [a,b]

Let P = {a = xo, %4, ..., X, = b} € p[a,b]

Let t, € [xx_1, %] and Aay = a(xy) — a(xx_q)

Let € > 0 be given

Given f € R(a) and f € R(B)
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Let C, and C, be two constants.

To prove: f € (Cia + C,B) and

[ fd(Cia+Cp)=C ) fda+C, [ fdB

Now, f € R()

&

AER 9:V€1=2|C|
1

> 0 ,there exists P of [a,b] such that for all P is finer
that P-,and ¢, €[x,_y,x,] we have |S(P, f, @) ~ Al <& and A= [ f d f da
(1)

Also, f € R(B)

&

BEeER 9:V82=2|C|
2

> 0 ,there exists P, of [a,b] such that for all P is finer
that P,,and ¢, €[x,_s, x,] we have [S(P,f, B) Bl <&, and A= [ f d f da ---
-(2)

LetP. =P, UP,

Then for all P finer than P,, we have

ISP, f, Cra + C,B) — (C1A + C,B)|

D FEIACa + G — (CrA + CB)
k=1

Y= f () (CAay + CALL) — (CLA + C,B)|
= |G, (k=1 f(t)Day — A+ C(X=1 [ (tk)ABy — Bl
= |C1| Xi=1 f (tr) Aoy — A+ Gy Xy f (ti) APi — B
=Gl SCP, f, @) — Al - |G| SCP, f, B) — B
= |Cile+|Cole; - (by (1) and (2))

= |C1|L + Gy

£ —_
— &£
2|C1| 2|CZ|

|S(P,f,Cla + Czﬁ) - (C]_A + CzB)l < &
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Therefore f € R(C,a + C,3)

Also [ f d (Cra + C,B) = 1A + C,B

b b b
J,fd(Ca+Cp)=C [ fda+C, [ fdB
Theorem 2.7: [R-S Integrability on Subintervals]

Assume that c € (a,b). If two of the three integrals in (1) exists, then the third

also exists and we have [ fda + [, fda = [ fda.

(i.e.) Let fand a be functions on the interval [a,b] and Let c € (a,b). Then (a)

[} fda exists if both [ fda & [ fda exists
(b) [ fda exists if both [ fda & [ fda exists

(c) fcb fda exists if both f: fda & fac fda exists.
Proof:
Assume that ¢ € (a,b).

Suppose fac fda and fcb fda exists

To prove: [, fda existsand [7 fda [* fda + [ fda
Let P={a=x¢, X1, e, X1, X = €, Xgt15---» X1, X = O}

Be a partitionon [a,b] Let P’ ={a=xg, X1, .., Xp—1, X = C}& P'"={c=

Xkr Xk415---» Xn—1, X, = D} be the partitions of [a, c] and  [c, b] respectively.
The Riemann - Stieltjes sums for these partitions are connected by the equation.
ISP, f,a) = S(P', f,a) + S(P", f, a)|----(1)

Let € > 0 be given
Let [ fda = Aand [ fda =B, ABER

Now, [ fda =A [ fda=B ,ABER
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Now, [ fda = A

> g = % > 0, there exists P., of [a, c] such that
For all P’ finer than P, we have

ISP, f,0) —Al<eg and A = [ fda  .......(2)

Also fcb fda =B

= & = >0, there exists P, of [c, b] such that

For all P’ finer than P,, we have

IS(P",f, @) — Al< e, and B = [ fda ... (3)

LetP. =P, UP,

Then for all P finer than P, we have

ISP, f,a) = (A+ B)| = ISP, f,a) + S(P", f,a) — (A + B)|
(by equation (1) )

=|(S(P", f,a) — A) + (S(P", f, @) — B)|

<|S(P,f,a) — Al +|S(P", f,a) — B|

IS(P,f,a) —(A+B)| < ¢
b .

J, fda exists

Also [ fda = A+ B

> [ fda+ [ fda = [ fda.

Similarly, we can prove the remaining two cases.
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Note:

Using mathematical induction, we can prove the above result for a

decomposition of [a, b] into a finite number of subintervals.

Definition 2.8.
If a < b, we define fba fda = — f; fda whenever fab fda exists.
We also define [* fda = 0

Then the equation

[, fda + fcb fda = fab fda becomes

jcfda + fbfda = —fbfda

jbfda+fcfda+fbfda =0

Integration by parts
Note:

A remarkable connection exists between the integrand and the integrator in the

R-S integral.

The existence of f: fda implies the existence of f; a df and the converse is

also true.
Theorem 2.9:
[The formula of integration by parts of R-S Integral]

If fe R(f) on [a,b] , then ae R(f) on [a,b] and we have

2 FOdatx) + [ a()df(x) = fF(D)a(b) - f(a)a(a)
Proof:

Let f and a be real valued functions on [a,b]

47

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Let P ={a = x4, x4, ..., X, = b} € p[a, b]

Let t;, €[xy_1,x] and A, = a(xy) — a(xy_1)

Let € > 0 be given fe R(a)

To Prove: ae R(f) and [, fda + [, adf = f(b)a(h) — f(a)a(a)
Now, fe R()

= their exists A€ R such that for all ¢ > 0 P, of [a, b] such that
V p finer than P, t, €[xj_1,x)], we have

IS(P,f,a) —Bl < eand B = [, fda

Let A= f(b)a(b) — f(a)a(a)

= A=Y fOa)alx) — Xioq f g a(xg-1)

v p finer than P,, we have

ISP, a, f) — (A= B)| = [Xk=1a(t)Afi — A+ Bl

< Xk=1a()Afy —A+ Bl (~ tg €[xg_1, xx])

< |Xk=1a () [f o) — f O] = Tier f () a(xy) +
Yk=1 f (g a(xg—1)| +B

< | Xkara o) f () — XkoqaCe) f(xe—q) — Yr=1f () alxy) +
Yk=1 f (1) a(xp-1)| +B

< [Xk=1f G- [alx) — alxy—q) — Bl
< ¥R=1f (t)Aay — B|

=|S(P,f,a) — B|

<e

2 1S(Pa, f) — (A—B)| <

(ie)ae R(f)and [  adf =A—B
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) =
= [ adf = f®)a®) - f@a@ - [ fda

> [ fdat[, adf = f(B)a(d) - f(@a(a)
Change of Variable in a Riemann-Stieltjes Integral
Theorem 2.10:

Let f €R (a) on [a,b] and let g be a strictly monotonic continuous function
defined on an interval S having endpoints ¢ and d. Assume that a=g(c) and

b=g(d). Let h and S8 be the composite functions defined as follows: h(x) =
flgG)], B(x) = alg(x)] if xeS

Then h € R(B) on S and we have

jabfda = fcdhdﬁ

(ie) [2) fF(Dda (©) = [ fFlg]d{alg()])

9

Proof:
Let f and a be real valued function defined on [a,b]

Letp={a=xq,x,.....,x,=b }€ p[a b]

Let t), € xp—1,xx] Ay = alxy) — a(xk—1)

Let € > 0 be given

Let g be a strictly monotonic function on [c, d]

Assume that a = g(c) and b = g(d)

Let hand 8 be the composite functions 3

h(x) = flg()], f(x) = alg()]if xe[c,d] ....... 1)
To prove: h €R (B)on [c,d] and f: fda = fcd hdp

Now, f €R (@)
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= their exist A € R 3 V € > 0 their exist P, of [a, b] such that

V p finer than P, and t; €[x;_q1,xi] , we have

IS(P,f,a) —Al<eand A = [ fda ... )

Also assume that

g is strictly monotonic increasing and continuous on [c, d]

= g is 1-1 and onto from [c, d] and [a, b]

and g~? exists and g~ is also strictly increasing and continuous on [a,b]
=~V partition p'{c = yo, V1, .-+, ¥n = d} 0Of [, d]

Their exists one and only partition p = { a = x, x4, ....., x,= b }of [a,b] with

X € g(xi)

(ie)p =g(@®"

=>p' =g

Letp’, = g~ 1(P,) be the corresponding partition of [c, d]
Let uy €[yi—1, yi] and AB = a(By) — a(Br-1)

also t, = gwpand x, = gOyx) ... 3)

Now, V partition p’ finer than p’, , we have
IS(@’, b, B) — Al = |Zk=1 h(w) Ay — Al

= [Xk=1hQu) [BO) = Be-1)] — A

= [Xk=1fguw)[a(g (i) — a(g(yk-1)] — Al
< [XR=1f () [aCx) — alxg-1)] — Al

< ¥R=1f (G Aay — Al

=|S(P, f,a) — Al

<g (by equation (2))
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IS(p’,h,B) —A| < ¢

~heR(B)and [‘hdB =4

:jdhdﬁ’:jbfda

(ie) [} fda = [‘hdB = [, fO)da(t) = [ h(x)dB (x)

g(d) d
= [ f@de® = [ flgeNatalgtan

9
Note:
When a(x) = x, the above Theorem applies to Riemann integrals.
Reduction to a Riemann Integral

Theorem 2.11;

Assume f € R (a) on [a,b] and assume that @ has a continuous derivative a’ on [a,b]. Then

the Riemann integral f; f(x) a’'(x)dx exists and we have

[P F@ dat) = [FFO0) @ (0)dx.

Proof:

Let f & d be real-valued functions defined on [a,b]
Letp={a=xyxq,....,x,= b }€ P[a,b] Let t;, €[ x,_1, xx]
Aay = alx) — a(xg-1)

Let € > 0 be given

Given f € R (a) and «a has a continuous derivative a’ on [a,b].
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To Prove: f;f(x) a'(x)dx exists and f:f(x) da(x) = f;’ F00) ' (x)dx.

Now,feER(a¢) =>3A4A€¢R 3 Ve, =€, >0 3P.of[ab] >

Vv P finer than P, and t; € [ xx_q, X, ], we have

ISP, fa)-A|<eand A=[] fda ... ()
Also, Given « ' exists and is continuous on [a, b]
By-Mean-Value Theorem, 3 v;, € [x,_q, xx]

a(x)—a'(x_1) = a'(vy) (X — xk-1)
Aa,= a'(vy).Axy,

SAap=a'(v) Axg eenenn.. 3)
a' is continuous on [a, b]
= @’ is unisormly_ontinuous on [0, b]

= giveneg, >03,6 > 0,3

P
Ix—y|<6:>|a(x)—a(y)|<sz=m

If we take a partition P., with norm j|P., || < &,

& partition P finer than P;,, we have

la'(ty) —a' ()| < ey =—— ... (@))

Let P, = Pg; UP,,

Then v P finer than P, we have

IS(P, fa') — Al = 1S(P, fa') = S(P,f,a) + S(P, f, a) — Al

< ISP, fa') =SP,f, Al + ISP, f,a) — Al
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ccccc ¢

e

KKKKK

= ST (Fa) (8 - A — B f(6) - A0 ISP, £ ) — A

= |Xk=1f )’ (tr) - Axy — Xioq f(t) @' (v ) Axi | + [S(P,f, @) — Al

(by equation (3))
= Yo fE)[a' (t) — a’ ()] Axy| + | S(P,fa — A) |

< |¥n_M ﬁ.Ax,J +2  (byequation 1,2 and 4)

I
T 2(b — ) k=12 TS

&

~2(b—a)
& &

2 2
=&

(b-a)+

(MO S, fa')—A| <e.
= [ F(x)a’ (x)dx exists and
[, fG) - @ @)dx = 4
(ie), [, Fa' (dx = [ fda
(ie), J, fda() = [, fa' (x)dx,

Step Functions as Integrators

Note:

e |If'a'isconstant on [a, b], then the Integral f;fda exists and has value 0 (i.e.)

[Dfda =0 s(P,f,a) = 0)

e If'a'isconstant except for a jump discontinuity at one point, then the integral

b -
J, fda need not exist;

53

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



o |If f;fda does exist, its value need not be zero.

Theorem 2.12:

Givena a < cb. Define a on [a, b] as follows:

The values a(a), a(c), a(b) are arbitrary;
a(x)=a(a)ifa<x<canda(x) =a(b)ifc<x<b

Let 'f' be defined on [a, b] in such a way that at least one of the functions 'f "or'a 'is
continuous from the left at ' ¢ ' and at least one is continuous from the fight at' ¢ ". Then f €

R(a)on[a b ], and we have

J fda = £(0) [a(+) — a(=)]

Proof:

Givena<c<b

Let f & a be real-valued functions defined on [a, b] Define '« 'on [a, b] as follows:

a(a) fas<x<c
a(x) =3a(c) ifx=c ... (2)
a(b) ifc<x<bh

where a(a), a(c), a(b) are arbitrary.

Let P = {a = x9, Xy, .., X—1, Xg» -.; X2} € P[a, b]
Let t, € [xy_q, xx] & Ad), = a(xy) — alxyg_q)
Let ¢ € [t_q, trl

Let € > 0 be given

Given atleast one of the functions ' f 'or ' a " is continuous from the left at ' ¢ "and at least

one is continuous from the right at ' C ".
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KKKKK E0GE 1 POl

To prove: f € R(a) & f;da = f(o)[a(c+) — ;(c - 1))

Consider the corresponding Riemann-Stieltjes sum with respect to p :

= 5(Py @) = ) f(t)Aa
k=1

= 5o f,0) = ) ftlaln) = @)
k=1

= Ft)aley) = a(xo)] + F(E)ales) — ale)] + -+ + F(tees)
[aCre) = alre_s)] + Ft)[ale) — aled) + -+ F(Et)a(tn) — alin_y)]

= f®[a(a) — a(a)] + f(t)[a(a) —a(a) + - + f(t-)[a(c) — a(a)] + f(t)
[a(b) = a(c)] + -+ f(t)[a(b) — a(b)]

~ SR, f,a) = f(tg-Dla(c) —alc — D]+ f(t)[alct+) — a(c)]

Let A = S(p,f,a) — f(C) - [a(C+) — a(C-)]

Now,

1Al = Is(p, f, @) — f(c) - [a(c+) — a(c—)]

= |f(tk-1[a(c) —a(c)] + ft)[al(ct+) —a(c)] — f(O)[a(c) — a(c—)]
—f()[a(c+) — a(c-)] |

= |[f(t-1) — F(] - [alc) — alc )] + [f(te) — f(O)][alc +) — a(c)]]

“ AL < I f(te-1) = O - la(e) = a(e)| + If () = f(©) Nale +) = alc)] ... (2)

Case (i) ' f " is continuous on both sides at ' ¢ ".

~ Givene> 0,36 >0 =:
I PI<&=|f(tk—1) — f()] < eand|f(te) — f(c) I< e
CAl < e la(e) —a(e-)| + & |a(c+) — a(o)]

This inequality holds whether or not ' f ' is continuous at * ¢ ".

case (ii) ' r "is discontinuous on both sides at ' ¢ '

= « 'is continuous at 'e on both sidesat ' C"'
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= a'(c) = a(C) = a(Ct)
We get, |A| =0

Case(iii) ' f "is continuous from left & ' f ' is discontinuous from the rightitc = 'a "is

continuous from the right at ' ¢

= a(c) = a(ct)

~we get, |A] < gla(c) — a(c—) |

Case (iv) ' f "is continuous from the right of

" f "is discontinuous from the leftat ' C '

= '« 'is continuous from the leftat ' C*

= a(0) = a(c—)

~we get, |A]l < €+ |a(c+) — a(o)|

From the above four cases; we get f € R(a)
& [, fda = f(0)[a(c+) — a(c-)]

Note:

The value of a Riemann - stieltjes integral can be altered by changing the value of ' f "at a

single point.
Example 2.13:

This example shows that the existence of the integral k can also be affected by a change of

the value of ' f " at a single point.

0, ifx #0

Let a(x) = {_1, if x = 0

f(x) = 1if -1<x <1
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by Theorem 2.12 we get f_ll fda = f(0)[a(0+) — a(0 -)
=1.[0-0]=0
f_11 fda = 0, If we re-define ‘f” so that

(1, ifx#0
f(x)‘{z, if x=0

Then

S(p, f, @) = f (tr-)[@(0) — alxx_)] + f () [a(xr) — a(0)]
=f(te-[-1 - 0] + f(&)[0 — (—=1)]

S(p, f, ) = f(tr—1) + f (i)

Where x;_, <tp_q <0<t <xp

The value of this sum is 0,1 (or) -1, depending on [ *, fda does not exist.

Note:

In the Riemann integral [ ; f(x)dx; the values of ‘f” can be changed at a finite numbers of

points without affecting either the existence or the value of the integral.

0 if x € [a, b]\{c}

To prove this, consider f(x) = {C ifx=c

S(P, ) <[f(c)] . || PI

||p|| can be made arbitrarily small,

[P F@)dx =0
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Reduction of a Riemann-Stieltjies integral to a finite sum:

Definition 2.14:

Let ' f ' be defined on a closed interval [a, b]. If ( f(c) — f(c—)) is exist at some interior

point ' C ' then
@ If f(c)— f(c—) iscalled the left hand jump of' f" at'c .
(b) f(c+) — f(c) is called the right hand jump of ' f "at ' C .

(©) f(c) = f(c) iscalled the Jump of ' f "at ' ¢ ". If any one of the these three numbers is

different from' 0. then' ¢ " is called a jump discontinuity of "f."
Definition 2.15: [Step Function]

A function ' « ' defined in [a, b]. is called a Step function if there exists a partition a = x; <

X, < <x,=b:

"a ' is constant on each open sub interval (xj_4, x).

Note: Jumpat x;, = ) = a(x, +) —alx, —), 1<k <n
e Jumpatx; =a; = alx; +) — a(xy)
e Jumpatx, =a,=alx,) — alx, —)

—-05 —-1<x<0
1, 0<x<1
15 1<x<2
2.5, 2<x<3

Example: a(x) =

Theorem 2.16: [Reduction of a Riemann-Stieltjes Integral to a finite sum]

Let « be a step function defined on [a, b] with jump «a; at x,, where x, x, ..., x,, are as
described in Definition 2.15. Let ' f ' be defined on [a, b] in such a way that not both' f "and '

a 'are discontinuous from the right or from the left at each x,, then f:fda exists and we have
b
Jo FOOda(x) = Xz f G
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Proof:

Let ' f be a real -valued function on [a, b]

let ' « ' be a step function on [a, b]

= 3J a partition P = {a = x,, x5, ..., X, = b}

wherea =x; <x, << x,=b;

Their exist ' a ' is constant on each (xj_q, xx).

Let the Jump at x; be a; = a(x, +) — alxg =) e oo (1)

To prove: f:fda exists and fabfda =Y fOx) - ag

Lett, <xp < tpiq

Given not both ' f ' & * a " are discontinuous from right or from left at each ' x;,

By Theorem?2.7,

b ta ts ti+1 tn+1
f fda = fda + fda+---+f fda+---+J. fda
a ty ta tx to
b It ti+1
:>f fda = f fda ...........(2)
a k=1 "tk

Also by Theorem 2.12,

[ rda = reelated) - ats - 20,

k

where t, < xp < tgy, k=12,...,1n

b n
O f fda = z fle)lalx, +) — alx, —)]
a k=1

b n
S f fda = 2 FGea [byl]
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Definition 2.17: (Greatest Integer Function)

one of the simplest step functions is the greatest-integer function

e Itsvalue at ‘x’ is the greatest integer which is less than or equal to ‘x’ and is denoted

by []

e Thus [x] is the unique integer satisfying the inequalities

[x] <x<[x]+1
e The graph of the greatest integer function is gn below:
o Forex,[2-4]=2;[n]=3;[-4-2] =-5.

Theorem 2.18:

Every finite sum of real numbers can be written as a Riemann-Stieltjes. integral. In fact,

givenasum Y }_; ax, define' f "on [0, n] as follows:

fX)=a,ifk—1<x<kk=12..,n)f(0)=0

Then Sios a = Tiea f(K) = [ fO0dlx],
where [x] is the greatest integer < x.
Proof:

Let the finite sum of real numbers be Y}_; a

Define f:[0,n] - R by f(x) = {0; x=0

0 ,x =20

a, 0<x<1

an1 n—n<xgn-1
Ay, n—1<x<gn

(ie), f(x) =

Define a: [0,n] = R by a(x) = [x], where.

a,, k—1<x<kk=1,2,..
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[x] is the greatest integer < x

(0 0<x<1
1 1<x<?2

(ie),a(x) =1
n—2 n—-2<x<n-1
n—1 n—-1<x<n

To Prove: fonf (x)d[x] = YR-1a, x=nlet partition of [0,n] = {0,1,2,....,n} and jump at k,
ap = a(k+) —a(k-)

From equation (1) and (2) we get,

‘f’ is continuous from the left at each integer k = 1,2, ...,nand ' a " is continuous from the

right and having jump ' I "at each integer k = 1,2 ..., n.

By Theorem 2.16, f:fda exists
and [ f(x)da(x) = Zioa f (i)

= [ FeOdx] = Tpoy f(k) (alk+) — a(k-))

n

= > (k] - k=)

k=1

n

- Z (@0 = (k- 1))

k=1
[y f@)dlx] = T3y
Euler's Summation Formula
Note:

Euler's summation formula relates the integral of a function over an interval [a, b] with the

sum of the function values at the integers in [a, b]
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It also used to approximate integrals by sums or conversely, to estimate the values of certain

sums by means of integrals.
Theorem 2.19: [Euler's Summation Formula]

We have has a continuous derivative f' on [a, b], then

Ya<ncpf(m) = [ ab fGdx + [ abf ') () dx + f(a)((@)) = f(b)((b)),
where ((x)) = x — [x]. When a + b are integers, this becomes

f(a) + f(b)

b_.f(n) = [ Podx+ [ F (x) (x ¥ - 1) dx + ———

2
Proof:
Given, 'f'has a continuous derivative f’ on [a, b]
By Theorem 2.10, the integration by parts of R — S integral, we get,

2 600da) + [, a()df(x) = f(b)a(b) — f(a)a(a)

Replace a(x), a(a), a(b) by x — [x],a — [a],b — [b] respectively, we get,
[ fdGe— [x1) + [, (x — [x])dfGo) = f(b) (b — [b]) — f(a)(a — [a])
= [ fe0dx — [ fd[x] + [, ((0)dfG) = f(b) (b)) — (@) ()

= [ Jfedx+ [ ()()dx + f(a) (@) — fb)(0) ) = f, fx)d[x]

By Theorem 2.18, we get, Yo cncpf(n) = [ f(x)d[x]

b Tacnspf() = [ F0dx + [ ()(G0)dx + £(@) ((@)) — (DY () ..... (1)

When a and b are integers,
(®)=x-[x]; (a)) =a—[a]=a-a=0
() =b-[b]=b-b=0
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(1) 2 Yacnepf(@) = [T EE)dx + [ 7 F () ((x))dx

> Yacnepf(n) = [ UFdx + [ (%) (x — [x])dx — %f £ (x)dx
= Facnao i) = [ fG0dx + [P (o) — (x K- %) dx + % [ 26 ()dx

1 1
= Sacnanf(0) = [ 100dx+ 100 (x = [x] - 5) dx + [ GOIR

Sacnenfm) = [ £ dx+ [0 (x = [x] — 3) dx + 2 [£(b) — f(a)]

Sacncof() + (@) = [ (0 dx + [, ') (x— [x] = 3) dx + 2 f(b) — 2f(a) + f(a)

= ¥b_f(n) = [ fe)dx + [, (%) (x —[x] - %) dx + %(f(a) + f(b)

Monotonically Increasing Integrators. Upper and Lower integrals
Note:

e When'a'is increasing, the differences Aoy = a(xy) — a(xy) which appear in the

Riemann-Stieltjes sums are all non-negative. (i.e.), Aak > 0 when a is increasing.
e a7 o0nJ[a,b]to means that a is increasing on [a, b].
Definition 2.20:

To find the area of the region under the graph of a function ‘ f © we consider Riemann sums
S(P, f) = X f(tx)A xi as approximation to the area by means of rectangles. Let P be a

partition of [a, b].

Then the upper and lower Riemann sums of a function ‘f * are
U(P, ) = X My (DA xy

and L(P,f) =X My (HAxy

where, M, (f) = Sup {f(x):x € [xx_1, Xx]}

my (f) = inf {f(x): x € [Xp_1, Xi]}
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Our geometric intuition tells us that the upper sums are at least as big as the area we seek,

whereas the lower sums cannot exceed this area.

Then the upper integral of ‘f is the inf of all upper sums and the lower integral of * f* is the

sup of all lower sums.
(i.e.) Upper integral of ‘ f* = fabfdx = inf {U(P,f): P € p[a,b]}
Lower integral of * f ¢ = fﬁbfdx = Sup {L(P,f): P € p[a,b]}

If < £* is a continuous function, then [ *fdx = [ "fdx = [ "fdx
Definition 2.21:

Let P be a partition of [a, b] and let My (f) = Sup {f(x):x € [Xy_1, Xx]
my (f) = inf {f(x):x € [xXp_1, x|}

The numbers U(P, f, ) = Yp_; My ()Axy

and L(P,f a) = Yg_, mp(HAxy are called respectively, the upper and lower stieltjes sums

of “ f ¢ with respect to * a © for the partition “ P °.

Note:

a increasing on [a, b] = L(P,f,a) < S(P,f,a) < U(P,f, a)
Let ty € [Xx_1, Xkl

Then clearly, inf {f(x)} < f(ty) < Sup{f(x)}, X € [Xx—_q1,Xk]
(i.e.), m(f) < f(ty) < My(f) ....(1)

If a increasing on [a, b], then Aoy = 0

= (1) = m(HAay < f(t)Aoy < M (f)Aay

= Y my (DA < X f(ti) Aoy < X My (HAoy

(ie), L(P,f,a) < S(P,f,a) < U(P,f )

Hence if a increasing on [a, b] then, L(P, f,a) < S(P, f, ) < U(P, f, a)
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Theorem 2.22:

Assume that « increasing on [a, b]. Then:

(i)If P" is finer than P, we have U(P’,f, ) < U(P,f,a) & L(P',f,a) > L(P,f a)
(ii) For any two partitions P, and P,, we have L(P;, f,a) < U(P,, f, o).

Proof:

Assume that a increasing on [a, b]

(i) Let P,P’ € P[a,b]

Given P’ is finer thath P (i.e.), P c P'.

Let P = {a = x¢, X1, Xy, ..., Xy = b}

It suffices to prove, when P’ contains exactly one more point than P, say the point' C".
let P’ = {a = x¢,Xq, ..., Xj—1, G Xj, ..., Xy = b}

Then the upper stieltjes sums of " f’ "w.r.to "o ' for P is
U(P' f) O() = ZE=1Mk ' (f)Aak
where My (f) = sup{f(x): x € [xyx_q1, Xxl}

consider the upper stieltjes sum of ' f'w.r.to "o ' for P ' is

U(Pf, @) = Xk=1 M (DAay + M’ (D [a(c) — alxi-1)] + M" (Oalx) — a(c)]

K1
where M'(f) = sup{f(x): x € [x_4, cl}
M"(f) = sup{f(x):x € [c,x;]}
clearly, M'(f) < M;(f) + M"(f) < M;(f) ...... (1)
Now, M'(D[a(c) — alxi-1)] + M" (Halx) — a(c)] < Mj(Hlal(c) — alx-)] +

M;(D[ax;) — a(c)] (by equation (1))
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= My () — i) +a) — Q)]
= My o) — Cxiy)]
S2_y My(P)Aag + M (Pl - ale)] + M (Pla(x) - a(o)]
< TPy Me(H)Bay + M(NlaGe) — o) < 3oy M(PAd
~ (WU, f,a) <UP,f,a)
L(P',f,a) = L(P,f,a)
(ii) Let P, & P, be two partitions of [a, b].
LetP =P, UP,
= P, C P &P, C P
Then by (i), L(Py, £,@) < L(P, £,@) < U(P, f,@) < U(Py, f,0)
=> L(P,f,a) KU, f,a)
Note:
If a 7 on [a, b], then m[a(b) — a(a)] < M - [a(b) — a(a)]
Where
M = sup{f(0):x € [a,b]} m = nf{f (x)ix € [a, b]}
For, m - [a(b) — a(a)] < L(P,, £, @)
<u(P,, f,a)
< M- [a(b) — a(a)]

~m[a(b) —a(a)] £ M - [a(b) — a(a)]
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Definition 2.23:

Assume that @ / on [a, b].The Upper Riemann-stieltjes Integral of 'f’ w.r.t' a ' is defined as

follows: I(f,a) = fa_bfda = inf{U(P,f,a);p € P[a, b]}

The Lower Riemann- stieltjes Integral of ' f 'w.r.t "« " is defined as follows: I(f, @) =

[ fda = sup{L(P, f,a):p € P[a,b]}
b -b e . o
If [ fda =[_ fda,then'f"issaid to be Riemann- stieltjes integrable on [a, b].

Note:

When a(x) = x, then U(P, f)&L(P, f) are called the upper and lower Riemann sums. The

corresponding Upper Riemann Integral is fa_b f(x)dx = inf{U(P, ); P € Pla, b]}
The Lower Riemann integral is f_ba f(x)dx = sup{L(P,f):P € P[a,b]}

If f_baf(x)dx = fa_bf(x)dx, then' £ ' is said to be Riemann Integrable on [a, b].
Theorem 2.24:

Assume that & 7 on [a, b]. Then I(f, a) < I(f, @) (i.e.) f_bafda < fffda
Proof:

Let P be a partition of [a, b]

Let € > 0 be given

Then there exsist a partition P; 2: U(P, f,a) < I(f,a) + ¢

Let P be finer than P,

(ie),P, C P

Then by Theorem 2.22,
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L(P,f,a) SL(P,f,a) &U(Py, f, ) = l;(Pz,;, a)

= L(P,f,a) SL(P,f,a) SUP, f,a) SU(P,f,a)
= L(P,f,a) SUP,f,a)

= L(P,f,a) <I(f,a) +€ ......... (2)

(i.e.)., I(f, @) + € is an upper bound to all lower sums L(P, f, @)
From the definition of supremum and by (2), we get,
sup{L(p, f,a):P € P[a,b]} < I(f,a) + ¢

(ie) If,) < I(f,) +¢

&> 0 is arbitrary, we get, I(f, @) < I(f,a)

Example 2.25:

It is easy to give an example in which I(f, a@): < I(f, @).
Leta(x) =x

Define ' f "on [0,1] as follows.

1if x is rational
0 if x is irrational

Fo ={
Then for every partition P of [0,1], we have
Mi(f) = suplf():x € [xpop, ]} = 1
and m,(r) = inf{f (x):x € [y, %]} = 0
(i) M(f) = 1 &my () = 0

-+ Every subinterval contains both rational and irrational numbers

U ) =X M(f) Axp =2 1-Axp =) xp=b=a=1
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LP,f)=% m(f) Axp =% 0-Ax, =0

(ie.)., U, f) = 1&L(P, f) = 0 VP.
- For[a,b] = [0,1] .f, " f(x)dx = inf{U(P,f): P € P[a,b]} = 1

and [ f(x)dx = sup{L(P, f): P € P[a,b]} = 0

if x 1s rational

The same result holds if f(x) = {(1) i ¥ is irrational

Additive and Linearity Properties of Upper and Lower Integrals.
Theorem 2.26:

Let ' f ' be a function defined on [a, b] and let ' « ' be an increasing function on [a, b]. Then

for any c € (a, b) we have that

2) J," fda= [ fda+ [ " fda b) [°, fda= [, fda+ [, fda
Proof:

Let' f "be a function on [a, b]

Let ' a’ be an increasing function on [a,b]

Letc € (a,b).

Let P = {a = xg, X1, ., X, = C = Y0, V1, -, Ym = b} be a partition of [a, b]

Let P, ={a = xy,xq, ..., X, = c}—d,P, = {c = =Y, V1, ..., ¥m = b}, be the partitions of
[a,c] & [c, b]. respectively.

a) Now, [ fda = inf(U(P, f,): P € P[Q, b]}

= inf{Z SUp(f ()i x € [xi 1, %0k + ) suplf (1):y € [y, vildhety

k=1 k=1
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= inf{z sup{f (x):x € [xy_1, xx]}A): p; € P|a, c]}

k=1

+ inf{z sup{f (¥):¥ € [yk-1, ¥xl}Aay: P, € P]c, b]}

k=1

= inflU(P,, f,@): P; € P[a,c]} + inf{lU(P,, f,a): P, € P[c,b]} = j

]_bfda=j_cfda+f_bfda

Similarly, we can prove that

j_bfda=f_cfda+f_bfda.

Theorem 2.27:

N fda + J_bfda

Let' f "and ' g ' be any functions defined on [a, b] and let ' a ' be an increasing function on
[a, b]. Then

a) [["(f+g)da< [, fda+ [, gda

b) [ °,(f + 9)da = [ fda + [ gda

Proof:

Let' f "and ' g ' be any functions defined on [a, b]
let ' « ' be an increasing function on [a, b]

Let P = {a = xg, X4, ..., X, = b} € P[a, b]
Clearly, f(x) < sup{f(x):x € [xy_1, xx]}

g(x) < supl{g(x): x € [xp—1, %]}

= f(x) + g(x) < sup{f (x):x € [xp_1, x,]} + sup{g(x): x € [xp_1, %]}
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= sup{f (x) + g(x):x € [xy_1, x4]}
< sup{f (x): x € [xp_1, x;]} + sup{g (x): x € [x)_1, %, ]}

(i) M(f + ) < M (F) + My (9)
> > M(f + A < ). MDA+ ) My(g)Aay
k=1 k=1 k=1

(ile)UP, (f+9)a) <UPP,f,a) +U(P,g,a)

Taking infimum, we get, fa—b (f + g)da < fa—b fda + fa—b gda.

Similarly, we can prove that fb (f + g)da > fb fda + fb gda
—a Z Joa -a

Riemann’s Condition:
Definition 2.28:

We say that ‘f” satisfies Riemann’s condition with respect to ‘a’ on [a,b] if for every € > 0, 3
a partition P, such that P finer than P, implies 0 < U(P, f,a) — L(P,f,a) < ¢.

Theorem 2.29:
Assume that a 7 [a, b]. Then the following three statements are equivalent

(i) feR(a)on]a b].
(i)  fsatisfies Riemann’s condition w.r.to @ on [a. b]

@iy 1(fa)=I(a)
Proof:
Let f and ‘a’ be real — valued fns defined on [a, b].
Given a is an increasing on [a, b]
() TP: (i) = (i)

Assume that f € R(a) on [a,b]
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Let P= {a=xq, x4, ..., X, = b} € P[a, b]
Let t, € [xr—1,Xx] and Aay = a(xy) — a(Xk—1)
Let € > 0 be given
To prove: f satisfies Riemann’s condition w.r.to a on [a,b]
(i.e.) Toprove: 0S U(P,f,a) — L(P, f,a) < ¢
Here ‘@’ is increasing on [a, b]
Case (i): a(a) = a(b)
‘a’ is a constant function.

Ay = alxy) — alxg_1) =0

(ie)Aa, =0Vk=12,..,n

UP,f,a) =0and L(P,f,a) =0
=>0=U(P,f,a)—L(P,f,a) <c¢

~ Riemann’s condition is satisfied trivially
Case (ii): a(a) < a(b)
Now, f € R(a)

=>3JA€ER 2:Vg = 2 > 0,3 P, of[a b] 3 V Pis finer than P, and all choice of t, t; €

[Xk_1, X1 ] We have,

| k=1 f(t)day — A] < g

IZhoi ftDAa — Al <Z @)
Where A= [7 f da
Now,

1X%=1(f () = F (&) Ay | = [Xk=q f(E)Day — L=y f (tr) Ao

= [ Xk=1 f(t)Aay — A+ A = Yooy f () D]
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< 57, F(toAay — Al + |—(Ch, F(tD)Aay — A)]

& &
<;+5[by1]

2¢

1Xk=1(f (&) — f(E)Aay] < =
Now, M. (f) — my(f) = sup f(x) —inf f(X)V x € [xpe—1, Xic]

=sup f(x) — sup f(—x)

=sup f(x) —sup f(x") V x,x" € [xp_1, %]
= Mi(f) = my (f) = sup{f (x) — f(x"):x, x" € [xp—1, %, }

= f(x) - f(x")

S M (f) —mp(f) =2 fx) = f(X)Vh> 0,3 ty, t'y € [x_1, %] 3
Mi(f) = mp(f) —h < f(tw) — f(t'%)
= M (f) —m(f) < f(&) — f(t'x) + R

&

>
3[a(b)—a(a)] 0

Choose h =

Now, U(P, f,a) = L(P, f, ) = Xg_1(f )My Aty — L=y (f)mye Aty
= Zk=a[(FIMye = my (f)] A
< Lie=1[(F My — my ()] Aty
< Zk=alf (G) = f (&) + h] Aay
= Yik=alf (t) = f ()] Daye + Y=y hAay

<=+ ¥R hda,  (by2)

= 28 € _
=3t 3(a(b)-a(a)) a(b) - a(a)

=&

UP,f,a) —L(P,f,a) <&
73

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



~ Riemann’s condition is satisfied.

(i) To prove: (ii)=(iii)

Assume that ‘f* satisfies Riemann’s condition w.r.to s on [a, b].
= V & > 0,3 a partition P, 3: P finer than P,
= 0<UP,f,a)—L(P,f,a) <¢

To prove: I (f,a) = I (f, @)

Now, U(P,f,a) —L(P,f,a) < ¢

= U(P,f,a) <L(P,f,a)+e............. )
We know that, infU(P, f,a) < U(P, f,a)
=Ifa)< UPf,a) ............ 4)

And we know that,

L(P, f,a) < supL(P, f,a)

=L, f,a) < I(f,Q) ......... (5)

Now,

I (f, a) < U(P, f,a) [by equation (4)]

< L(P,f,a) + ¢ [by equation (3)]

< I (f, @)+ € [by equation (5)]
Ifa)<I(fa)+evVe>0

Since, &€ > 0 is arbitrary,

I(f,a)< I(f,a) ... (6)

Given a 7 on [a, b]

Then by Theorem 2.24,

(o) <I(fa) .......... (7)
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From equation (6) and (7) we get,
| (f,a) <1(fa)
(i) = (i)
Assume that I (f, @) =1 (f, a)
To prove: f € R(a) on [a, b]
(ie.) [, f da exists
(i.e.) To prove: |S(P, f,a) — A| < € where A = fabf da
We know that I (f,a) = inf{ U(P, f,a): P € [a,b]}
I (f,a) = sup{L(P,f,a):P € pla,b]}
GivenI (f,a) = I1(f,a)...cc.cccccenn..... (8)
Given, £ > 0 choose P! 2: U(P, f,a) < I (f,a) + €V P finer than P!’ 3:
L(P,f,a) < I(f,a@)+ €V P finer than P’
Let P.= P! U P!’
Then Vv P finer than P,
I(f,a)—e< L(P,f,a) <S(P,f,a) <U(P,f,a) <I(f,a) +¢
= I(f,a) —e<SP,f,a) <UP,f,a) <I(f,a) +¢
= A-e< S(P,f,a) <A+¢
= —e< S(P,f,a) —A<e¢
= |S(P,f,a) —A| <c¢

Hence f € R(a) on [a, b]
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Comparison Theorems:
Theorem 2.30:

Assume that « 7 on [a,b]. Iffe R(a) and g € R(a) on[a,b] and if f(x)< g(x) for all x in

[a,b], then we have f;f(x)da(x) < f; g(x)da(x).
Proof:

Given a 7 on [a,b].

LetP={a=xyxq,...,X, = b} € D[a,b]

Lett, € [ xp—1, xx] and A ay, = a( xi) - a( Xx—1)
Let € > 0 be given

fe R(a) andge R(a) on[ab] and if f(x)< g(x) for all x in [a,b],
To prove: f;f(x)da(x) < fab g(x)da(x)

a 7 on[a, b],

Aqpforallk=1,2,....n

Given f(x) < g(x) for all x € [a,b]

f(tk) < g(tk) for all tk € [xk_l, xk]

n n
D ) ba < ) gt ba
k=1 k=1

S(p, f, @) <S(p,g, @) oo ©)

f.g € R(a) for ||P|| - 0, we have S(p,f, @) — f; fda and S(p,g, @) — f; gda
from equation (3) f;fda < f; gda

(ie), [L fdax) < [F gt)d a(x)
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Note:

In particular, the above Theorem implies that whenever g(x) > 0 and @ / on [a,b],

[P gdax) 20

Theorem 2.31:

Assume that « 7 on [a,b]. |f f € R(a) on [a,b], then |f| € R(a) on [a,b] and we have the

inequality If; f)dalx)| < f; If (0)|d a(x).

Proof:

Assume that a 2 on [a,b].

Let P={a= x,, x4, ..., X, = b} € D[a,b]

Lett, € [ xi—1, xx] and A ay, = a( xi) - a( Xx—1)

Let € > 0 be given

Given fe R(a) on [a,b]

Given € > 0, there exist a partition P, such that P finer than P,

UP,f,a) —LP.fa) < ¢
ZMk(f)Aak _ka(f)Aak <e
k=1 k=1

k=1[Mx(®) —my (D] A @), < &------- 1)
Where, M. (f) = sup {f(x): XE[ x_1, x]} and
mie(£) = inf {(x): X[ 21, x,]}
To prove: [f| € R(a)
Now, M (f) — my ()= sup f(x) — inf f(x), X €[ xp_1, xi]
= sup f(x) —sup f(-x)
= sup f(x) — sup f(y)

My (£) — my (H=sup {f(x) - f(y) : x.y €[ 241, Xx]}---(2)
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We know that [[{0<) — )l </ — I

Equation (2)=> [ M (Ifl) — m (IfD)=lsup {1001 — V)1 - X,y €[ o1, xiT}
<Isup {(f0) — f(y)) : X,y € X1, %I}
= M (D) = m ()

M (1) — 7 (1)) < 1My (6) — i ()]

SUPEF() — f(y) : Xy €[ xi1, ]} > 0

IMi (D) = mu (1) < M (£) — mye (D)

NgE

(M 1D = i (IFD] 8 @ < ) [IMe(B) = (D] &
k=1

&
1l

k=1 M (IfDA g — my (If]) A @y < & (by (1))
UP, If, @) = L(PIfl, @) < €
fe R(a) on[a,b]

Take g = [f|

Then by Theorem 2.30, f;f(x)d a(x)| < f: |f () |d a(x).
~ [P fda@ < [ f@da@) < [21f@]dal).

[} fedat) < [} IfGld a()
Note:
The converse of the above Theorem is not true. (i.e.) @ 2 on [a,b] and |f| € R(a) # f € R()

Theorem 2.32:
Assume that « 7 on [a,b]. If f € R(a) on [a, b], then f? € R(a) on [a, b].
Proof:

Assume that ¢ 7 on [a, b]
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Let P = {a = x4, Xy, ..., X, = b} € P,[a, b]

Let t, € [xp_q, xp] + Ay = alxy) — a(xy_q)

Let € > 0 be given

Let M be an upper bound of |ffon [a, b] ......

Given f € R(a) on [a,b] = |f| € R(a) on [a,b] (by Thm (7.2))

> Ve = QiM > 0, 3 a partition P., € P[a,b]

P is finer than P, implies.

UPy, Ifl,a) — L(PIfl, @) < &

k

1l
[y

[Mi (1 1) = me(1f DIAay < 5o

U
i1=

Where, My (f) = sup{f (x): x € [x)_1, xx]}

and my (f) = In F{f (0): x € [xecr02]}
To prove: f2 € R(a) on [a, b]
Now,

M (f?) = sup{[f (x)]%: x € [xp_1, x,c]}
= sup{|f ()|*: x € [xx_1, %, ]}
= [sup{|f ()|: x € [xz, x,]}]?
= [M(IfD]?

(i.e.), M (f?) = [M(IfD]?
similarly my (f2) = [my(IfD]?

> > M(lfDAa, - kz me(IfDAa, < oo

(2
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Now,
M (f) = mi(f2) = M (If1]? — [ (If DI?
= M (1D + mue(1F D) (Ml f 1) = mue (1 D)
my(f?) — mi (f2) < 2M M, (If ) — mie (1 DI (by(1))
= Yh=1 M (f?). Dy = Xy i (f ). Ay
< ZMIER=1 Mic(1f1) — mie(If D]Aa]
= U(P,f? a)— L(P,f? a) < 2M - —— (by (2))
= U(P,f%a) — L(P,f% a) <& = f% € R(a) on [a, b].
Theorem 2.33:

Assume that « 7 on[a,b]. If f € R(a) and g € R(a) on [a, b], then the product f. g €
R(a)on [a,b].

Proof:

Assume that @ 7 on [, b]

Given f € R(a)&g € R(a) on [a, b]

To prove: . g € R() on [a, b]

Now, [/ () + g1 = [f I + (g + 2/ ()90
> FG09() = 5 1FG) + gGIT — 3 [F T — 3 [

“ f € R(a) and g € R(a), by Theorem2.4 & 2.32,
- + g]? Ll Z€ER
SIf + 915 f25 9% €R@

=>>(f+9)* —f*—9* € R() (ie) f.g € R(a)
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Unit 111

The Riemann-Stieltjes Integral - Integrators of bounded variation-Sufficient conditions for the
existence of Riemann-Stieltjes Integrals-Necessary conditions for the existence of RS
integrals- Mean value theorems -integrals as a function of the interval —Second fundamental
Theorem of integral calculus-Change of variable -Second Mean Value Theorem for Riemann

integral- Riemann-Stieltjes integrals depending on a parameter.
INTEGRATORS OF BOUNDED VARIATIONS
Note 3.1:

If ‘@’ is of bounded variation on [a, b], then ‘a’ can be expressed as the difference of two

increasing functions a,; and a,. (i.e.). @ = a;- a;,.
If « = a;- a, is such a decomposition and if f € R(a;) and f € R(a;,) on [a, b] , then f € R(a)
But the converse is not true.

(ie). If f € R(a) on [a, b], then it is quite possible to choose increasing functions a; and «,

such that neither integral fabf da, and f:f da, exits

The uniqueness of the decomposition a = a;- a, is not possible .

The converse is true when there exists at least one decomposition such that a; is the total

variations of @ and a, = a;- a.
Theorem 3.2:

Assume that « is the bounded variations on [a, b]. Let V(x) denote the total variation of ‘a’on
[a, x]. Ifa<x < b, and let V(a) = 0. Let f be defined and bounded on [a, b]. If f € R(«) on [a,
b], then f € R(V) on [a, b].

Proof:
Let a be of bounded variation on [a, b]
Let V:[a, b]— R such that

_ if x=a
V(X) _{Va @ifacx ep e (1)
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Let P = {a= Xo, X1, ... Xn= b}€ P[a, b]

Let t;, € [Xk1, X] and Aa,= a(Xx) — a(Xk-1)

Let € >0 be given

Let f be defined and bounded on [a, b]

=There exits M > 0 such that | f(x) I< M, where x € [0, b] ........(2)
Given: f€R (a) on [a, b]

To prove: f € R(V) on [a, b]

Case (i): V(b) =0

=V is a constant function=> AV, =0

=>feR(V)

case(ii) V(b)> 0

=from the definition of total variation , we get x <y = V(X) < V(y)
=V is an increasing function on [a, b]

Therefore, it is enough to show that, ‘f” satisfies the Riemann condition w.r.to V on [a, b],

(i.e.)To prove: U(p, f,Vv) —L(p,f,v) <&

Now, Given: f € R (a)

=There exists A € R suchthatV &, = gg > 0, there exist P, of [a, b] suchthat
v P finer than & all choice of tx, t, € [Xk-1, X],

We have

Py f(te) A - Al <= & IS F(t') A - Al < S where A= [ f dat
Now,

IDR=1(F ) FC ) A ap | = 125ar f(t) Doy + Ximy (1) A |
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SIS () A ag — A+ A- S F(t) A a |

<I Xk f(te) A ag — Al+ I-QF=, f(tk) A ag — Al

<jrie]
Therefore, IX7_, (f (t) f(ti D A I< = oo (3)
Now,
V(b) = V(a, b) (by 1)
= sup{Xk-1 | A I}
> V=1 | Day |
(ie) V(O)> ZP_y | Ayl o (4)

By the property of supremum,

=V(b) - ﬁ <Y | Aayl
V(b) - oy 1 Aap | < e (5)

Now, we note that AV - A ay | = 0
Therefore,
M (f) = M (1A Vi - 18 g 1) <SPy (m — (—m)(A Vi - 1A . 1)

=2m (XF AV — T3, [ Aay 1)
=2m(V(b) — V(0) - i, | Ay 1)
=2m(V(b) - Xi=q 1Ay 1)
<2m ﬁ = 5 (by equation (5) )

Therefore, X1 [M (f) — M (HIA Vi - 1A a 1) < g ............ (6)

Let A(p)={k: Aa;, =0}

& B(p)={k: Aa, <0}
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£
4v(b)

Let h= >0

We know that, Mi(f)- mk(f)= sup f(x) — inf f(x), X € [Xi1, Xd]
=sup f(x) —sup (-f(x))
= sup f(x) —sup (f(y)), X, ¥ €[Xk-1, Xk]
Mi(f)- mi(f)=sup { f(x)- f(y) ; X, ¥ €[Xk-1, X4]
Mk(f)- mk(f) = f(x) — 1(y)
Ifk € A(p) , choose ti & t;;" such that Mi(f)- mi(f) —h < f(ti)- f(t,.")
=SMi(f)- mi(f) < f(t)- f(t")+ h
If, 1f k € B(p) , choose tk & t;’ such that Mi(f)- mi(f) —h < f(t')- f(t)
>Mi(f)- m(f) < f(t,) — f(t) + h
Now, X7, (M () — my (D) | Ay, | < Teae(Ftr) — £(¢;) +h) | Aty |
+ Tres f((1)) — (&) +h) | Aty |
=Ykeamy ) — £(t1) +h) | Aay | + Tyepp F((E1)) — (&) + h) | Aay |
+ Ykeap) M 1Ay 1+ keapy b | Aay |
=rea{(ti) = () Ay + renpy F((6)) — f(ti)) Aaye+ Xj—y hu| Ay |
=Xk=1(f (t) — f(t)) Dat h Xy | Ay |

<2+ hv(b)] (by equation (5) & (4) )

<f+—=_ V(b (by equation (7))

4 49

+

N | m

B m
B,

FealMie () = (D] 1 By 1 <5 o, (8)
Now,

k=1 M (f) — m (O ]Av =51 [Mi (f) — mp (F)](Avy — | Aay | +] Aay 1)
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<>+~ (byequation (6) & (7))
Therefore, Y2 _1[M (f) — m (f)]Avy, < &
= Yik=1 M (f)Avy - oy my (A < e
SUP, f,v) - L(P, fv) <&
=f € R(V) on [a, b]
Theorem 3.3:

Let a be of bounded variations on [a, b] and assume that f € R(a) on [a, b]. Then f € R(a) on

every subinterval [c, d] of [a, b]
Proof:

Let @ be a bounded variation on [a, b]
Let v:[a, b]—R such that

0 ifx=a
ve(a,x)ifa<x <b

V(X) = {

Let P={a=Xo,Xi Xn=b} € P(a, b)

Let € > 0 be given
Given f € R(a) on [a, b]

To prove: f € R(a) on [c, d] of [a, b]

=, a is of bounded variation on [a, b], @ =V — (V- a)where V & V- « are 7 on [a, b]
Then by Theorem 3.2,

feR(a)on[a bl =>feR(v) &f e R(V-a)on [a b]

=>feR(w) &feR(V-a)on]|c, d] since (¢ & V- a are 7 on [a, b])

=f € R(a) on [c, d] since (a = v-(v-a)
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~feR(a)on[a b] =feR(a)on[cd]

Now,

We shall prove that Theorem when « is increasing on [a, b].
Assume thata<c<b

By Theorem 2.7. of integration by parts,

[{fda=[ fda+[ fda  wherea<c<d<b

> [“fda=[ fda-[fda
To prove: f € R(a) on [c, d]

(i.e.), To prove: ‘f* satisfies the Riemann condition w.r.to & on [c, d]
(i..), To prove: fcdf da exists.

(i..), To prove: fjf da & facf da exist
Since, f € R(a) on [a, b]of [a, b]

Given: € > 0, there exist a position P, on [a, b] such that P is finer than P.implies U(P, f, a)-
LP, f,a) <e

Let A(p, X) = U(P, f, a)- L(P, f, @) on [a, X]

~ equation (2) = A(p,b) < e.......... (3)

Assume that ¢ € P,

Let P/ be a partition of P, on [a, c]

Let P’ be a partition finer than P/ on [a, c]

(ie).,P'2 P

Then P= P’ U P/ Is a partition of [a, b]

(i.e.) P composed of the points of P’ along with those points of P, in [a, b]

From equation (3) =
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e > A(p,b)
=A(P’,c) + A(P.,b)
> A(P’,C)
Therefore, A(P',c) < €
(ie)., U(P', f, a)- L(P', f, )< €o0n|[a,c]

(i.e.)., f satisfies a Riemann condition on [a, c]& facf da exists

similarly, [ f da exists

(ie.) f€ R(a) on [c, d]

Theorem 3.4:

Assume f € R(a) & g € R(a) on [a, b] , where a 7 on [a, b] . Define
FX)= [ f(Oda(t) and G(X)= [, g()da(t) if x€ [a, b], then f € R(G) ,
g € R(F), and the product fg € R(a) on [a, b], and we have

[2 f)g()dax) = [} f()dGx)= [, g()dF (x)

Proof:

Let a 7 on [a, b]

Let P={a=xo, X1,.......... xn=b} € P[a, b]

Let t € [Xet, Xi] & Aage= a(Xie)-cr(Xk-1)

Let € > 0 be given

Assume that f € R(ar) & g € R(a) on [a, b]

Define F(x) = [7 f(Dda(t) & G(x) = [, g(©)da(t) if x € [a, b]

To prove: f e R(G) , g € R(F), fg € R(a)

[} F)g(da) = [ fF()dG)= [, g(x)dF (x)
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Here given f & g € R(a) on [a, b]
Then by theorem 2.33, f. g € R(x) on [a, b]

Now, To prove: f € R(@) & [, f(x)g(x)da(x)= [, f(x)dG(x)
Let Mg = sup {lg(X)| : X € [a, b]}

Given f € R(a)

=For all € > 0, there exit a partition P, such that P finer than P, implies U(P, f, a)- L(P, f,

For any partition P
S(P, f, G)= Xn_, f (tx )AGK

=21 £ (@)[G() — G(xe)]

= Yoy f@F g(®da(t) - [ g(©)da ()]

=Ero f@QL; 9Oda(®) + [ g(®da(®)]

=2k fI," 9(©)da(®)
S(P, f, G)= X7, f(tu)l f;‘k"_l g@®da(t)............ (2)
We can write, [, f(x)g(x)da(x)= X3, [* fOg®date)........... (3)
Equation (2) - (3) = S(P.AG)- [, f()g(x)da(x)
=X S, 9(Oda() - Tios [1* f(Dg(O)da(e)
=X [, [ (60 FOI9() da(®
18P, 1, G) - f F)gda)l = 15k [ [f(t)- {(]g() da(t)]

< B [l 1 F(@)- fOIgO! ] da()]

=Mq [7* [M(f) — my (f)]da(t)

Xk—1
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¢

e
oooooooo

=Mo{f, My (Hda(t) - [, my, (f)da(t)}
=Mg{U(P, f, a)- L(P, f, @)}

&

<My (YD)

~1S(P,f,G) - [) fF(x)g(0)da(x)I< e

» TERG) &[] F()dG(x) = [, f(0)g(x)da(x)

Similarly, we can prove that f € R(F) & [ f(x)dF(x) = [, f(x)g(x)da(x)

Sufficient conditions for Existence of Riemann — Stieltjes integrals

Theorem 3.5:

If ‘f* is continuous on [a, b] and if ‘a’ is of bounded variation on[a,b] then fER(a) on [a, b]
Proof:

Given f is continuous on [a, b]

f is bounded on [a, b]

Given ‘a’ is of bounded variation on[a,b] then

Let V: [a, b]— R such that

0 ifx=a
ve(a,x) ifa<x<b

V() =
Let P= {a= Xo, X1,.....xn=b} € P[a, b]

Let tk€ [Xk-1,Xx] & Ay = a(xy) — a(xk_q1)

Let £ >0 be given

To prove: feR(a) on [a, b]

[~ aisof bounded variation on[a,b] , then &« = v — (v — a) where v& v- a are 7on [a,b]

~ feR(v) & feR(v- @) on [a,b]
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= feR(a) on [a, b] ]

now, we shall prove that theorem when a 7on [a,b]
(i.e.) a<b = a(a) < a(b)

suppose, a(a) = a(b) then,

Aa, =0

~U@p.f, ) -L(p.f, a) =0< ¢

~feR(a) on [a,b]

suppose, a(a) < a(b)

Given f is continuous on [a, b]

= f is uniformly continuous on [a, b]

= given € > 0 there exists § >0 such that

X-y| <& = | f (X)- f ()< E/A ........ (1)
Where, A=2[a (b) —a (3)]

Let P, be a partition of [a,b] such that ||P, ||< &

If P is finer than P,, then ||P ||< &

o [f(ty — (2 )| < , t, ty, € [Xien, %]

Z(a(b)s—a(a))
Now, Mk(f) — mk(f) = sup {f(x) — f(y) : X, ¥ € [Xk-1,%]}

= |f(ty— f(t;,)| there exists, t, t;, € [Xk-1,X]

£
< N
2(a(b)-a(a))

~Mi(f) — mi(f) < 2(ab)-a(@)

= > M- m(D]Aey <

n
Aay,

€
Z(a(b) — a(a)) £
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= T M (DA Ty (A <5t ah) — a(@)

o T M (DA Ty m (A <> < e
(ie) U(p, f, a) -L(pf @) <e

~feR(a) on [a,b]

Theorem 3.6:

Each of the following conditions is sufficient for the existence of the Riemann integral

[} FOdx :

a) fis continuous on [a, b]
b) fis of bounded variation on [a, b]

Proof:

Let f be a function defined on [a, b]
a) fis continuous on [a, b] = fabf(x)dx exists
Given f is continuous on [a, b]
Let @ (X) = x
= « is of bdd variation on [a, b]

= By theorem 3.5, we get
f: f(x)dx exists

(i.e.) f:f(x)dx exists
b) ‘f" is of bounded variation on [a, b] = f; f(x)dx exists

« a(x) = x, a is continuous on [a, b]

~ By theorem 3.5,
b
f a(x)df(x) exists
a

By theorem 2.9
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b
f f(x)da(x) exists

(i.e.) ff f(x)dx exists
Note:

By Theorem 2.9, a second sufficient condition can be obtained by interchanging ‘f” & ‘a’
in the hypothesis.

(i.e.) If ‘a’ is a continuous on [a, b] and if ‘f* is of bounded variation on , then fER(a) on

[a, b]
Necessary conditions for Existence of Riemann — stieltjes integrals
Theorem 3.7:

Assume that ¢ 7on [a, b] and let a<c<b. Assume further that both ‘a’ and ‘f* are
discontinuous from the right at x=c; that is, assume that there exists an € >0 such that for

every 6 >0 there are values of x and y in the interval (c,c+8) for which |f(x) —f(c)| = € and

| @ (y) — a (c)| = €. Then the integral fabf(x)da(x) can not exists. The integral also fails

to exist if ‘@’ and ‘f” are discontinuous from the left at ‘c’.

Proof:

Let p= {a=Xo, Xu,....,xn=b}be a partition of [a, b] containing ‘¢’ as a point of subdivision.
Let on a« 7on [a, b]

Let a<c<b

Given ‘a’ and ‘f” are both discontinuous from the right at x=c.

(i.e.) there exists € >00B: V& > 0 X,y € (c,c+8) for which

[f(X)—f(c))]=cand|a (y)—a (c)|=e ......... (1)

If the i" subinterval has ‘c’ as its left end points, then

U, . @) -L(p.f, @) = Zpoy [Mc(h) - mi(H] A

= ;{1=1 [Mk (F) - m(D] [a(Xi) — a(Xi1)]
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, ~g0 ==

'''''' e

=2r—1 [Mk(®) - m(D] [a(xi) — a (c) + alc) — a(Xii)]
= =1 [Mi(f) - mi(f)] [a(xi) — a(c)]
= Yi=1 [Mk(f) - m(A] [a(xi) — a(c)]

~U@pf, a) -L(p.f, @) = 251 [Mk(f) - m(f] [a(x:) — a(C)] ......... (2)
Now,

Mi(f) — mi(f) = sup f(x) — inf f(x) ,XE[xi1.xi]
= sup f(x) — sup (-f(x))
= sup f(x) — sup f(y)
= sup (f(x) - f(y))
>f(x) — f(C) : X.y€ [Xi-1, X

=&

~Mi()-m(f) =>e ... 3)

Now,

If ‘¢’ is a common discontinuity from the right, we can assume that the point x; is chosen so
that

a(x)—aC)=¢e .......... (4)

~ equation (2) = U(p, f, a) -L(p,f, @) =¢. ¢

=g2

(i.e) Up, f, @) -L(p,f, @) = &2

~ Riemann’s condition is not satisfied

f: f(x)da(x) Cannot exists.

Similarly, if ‘@’ and ‘" are discontinuous from the left at ‘c’ then we can prove that

f:f(x)da(x) doesn’t exists.
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Mean — value Theorems for Riemann — stleltjes Integrals

Theorem 3.8: (First Mean — value Theorem for R.s Integral)

Assume that @ 7on and let feR(a) on [a, b]. Let M & m denote, respectively, the sup and inf

of the set {f(x):x€ [a, b]}. Then there exists a real number ’¢’ satisfying m<c<M such that

[, feda(x) = c [} da(x) = cla®) - ()]

In particular, if ‘f* is continuous on [a, b] ,then c=f(xo) in
Proof:

Assume that on a 7 on [a, b]

Let M= sup {f(x) : X€ [a, b]} & m = inf {f(X) : X€ [a, b]}
Let feR(a) on [a, b]

To prove: there exists CER satisfying m<c<M such that

[} fOda(x) = c ) da(x) = clab) - a (a)]
case (i): a(a)= a (b)

= a is constant on [a, b]
b

= .[ f)da(x) =0
a

Also a(b) — a (a) =0

[P f)da(x) = c ) da(x) = cla(b) — a ()]
Case(ii): a ()< a (b)

Let P= {a= Xo, X1,.....xn=b} € P[a, b]
Clearly, m<f(tk) <MV tk € [Xk-1,X]

= Z mAa;, < z f(t)Aa, < Z MAa;

=>mZAak <Sp,f,a) <M ZAak
=m[a(b) — a (@)] < S(p,fa) <M[a(b) — a (a)]

=mla) - « @] < [} fX)da) <M[abd) - a ()]
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=sm<———["f(x)da(x) <M

T a)-a(a)

b
o f@dat) _

= ms =3
J, da(x)

12 F(xda(x)

i.e)c=
(e, [? da(x)

= [7f)da(x) =c |, da(x) =cla(®) — @ (@] ......... (1)

Now, Here ‘f” is continuous on [a, b] and m<c<M

By intermediate Theorem for continuous functions,

there exists Xo € [a, b] such that f(xo) = ¢

- equation (1) = [} f(x)da(x) = f(xo) [} da(x) = f(x,) [a(b) — a (a)] for some xo
€ [a, b]

Theorem 3.9: (Second Mean -value Theorem for R-S integral)

Assume that « is continuous and that f 7 on [a, b] then there exists a point Xo in [a, b] in such
that f:f(x)da(x) = f(a) fab da(x)+ f(b) f: da(x)

Proof:

Given ‘a’ is continuous and f /7 on [a, b]

by first mean value Theorem 3.8, we get , there exists Xo € [a, b] such that

[ a()df(x) = ax)[fB) = F(@] w.oon... (1)
b b
f fl)da(x) + f a(x)df(x) = f(b)a(b) — f(a)a(a)

= [ f@)da(x) = f(B)a(b) - f(@a(@) - [} a()df(x)
= f()a(b) - f(@ala) - a(xp)[f(b) - f(@)] (by 1)
= f(B)a(b) - f(@a(a) — alxy)f(b) + a(xe)f (@)
= f(@alxo) — a(@] + FB)[alb) — alxy)]
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b X0 Mkb
f f)da(x) = f(a)f da(x) +f(b)f da(x)

The integral as a function of the interval

Note:

If feR(a) on [a, b] and if ‘@’ is of bounded variation then the integral f; fda exists x € [a, b]

Theorem 3.10:

Let a be of bounded variation on [a, b] and assume that feR(a) on [a,b] . Define F by equation

F(X)= [ fda if x € [a,b]
Then we have

(i) F is of bounded variation on [a, b]

(i)  Every point of continuity of ‘@’ is also a point of continuity of F

(iiiy If a 7on [a, b], the derivative F(x) exists at each point x in (a , b) where a’(x)

exists and where f is continuous. For such x, we have F'(x) = f(x) a (X)

Proof:
Given, a be of bounded variation on[a,b] and feER(«) on [a,b]
Define ‘F’ by the equation F(x) =/ fda ifx € [a,b]
()To Prove; F is of bounded variation on [a, b]
(i.e) Toprove: XR_|AF | <M M>0
(i.e)Toprove: YR, |F(x) — F(xp_ )| <M M>0
Assume that « 7on [a, b]
Given, «a is of bdd variation on [a,b]
n_lAagl SN N>0
Yroilale) —a(x_)| <N N>0 ........ (D)

Let m= inf{f(X) : x€ [a,b]} & M= sup{f(X) : X [a,b]}
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“ a 7on [a,b] and feR(a) on [a,b] by the first mean value theorem 3.8 we get,

There exists a real number ‘c’ satisfyingm < c < M
such that [ f(x)da(x) = c[a(b) — a (a)]

If x,_; # x, then f;kk_lf(x)da(x) = cla(xy) — a(x,_1)]

= [ feadat - [ et = clatu) - atr]

a

= F(xx) — F(xp-)=clalx) — alxg_1)]
= Yi=1 I1F (i) = F(xpe-1) 1= C Loy la(xye) — a(oxye—y)|
<C.N (byequation (1))

=M  where M=C.N

n

2 ) FG) = Pl < M

k=1

= F is of bounded variation on [a, b]

(i) Every point of continuity of ‘a’ is also a point of continuity of F
Let ‘a’ be continuous at xo

Let € >0 be given

To Prove: ‘F’ is continuous at Xo

‘@’ is continuous at Xo,

Given &>0, there exists §>0 such that

[X-Xo| < & = | (X)- @ (X0)|<€/¢  ......... (2)

Now by theorem 3.8,

[y, fda(x) = clax) = a (xo)]

= [T f@)dax) - [ f(x)da(x) =cla(x) - a (x,)]
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= F(X) — F(xo0)= c[a(x) — a (xo)]

= [F(X) — F(xo)|= cla(x) — a (xo)|
<c. ¢/ (by equation (2) )

JF) — FOo)l < e

“X-Xo| < & | F(X)- F (xo)[< &

=~ F is continuous at Xo

=~ Every point of continuity of ‘@’ is also a point of continuity of F

(iii)Given: a 7on [a,b] & a'(x) exists & ‘f* is continuous on [a , b]

To Prove: _F (x) exists at each point x in (a , b)

Let € >0 be given

Let xo € (a,b)

= a (X) exists

. alx)—alx
= i E®-eo)
X—Xq X—Xo

exists.

From equation (3) we have F(x) — F(xo)= c[a(x) — a (xq)]

— F(x)-F(xo) _ cla(x)—a (xo)]

X—Xo X—Xo
— lim F(x)-F(xo) _ c. lim [a(x)— a (x0)]
X—=Xg X—Xo X=X X—Xo
=F X)) =C. a (X))  .cooeon... 4)

w a'(Xo) exists, = F'(Xo) also exists.
Here f is continuous on [a, b]

Then by intermediate value theorem,
There exists Xo € [a, b] such that f(xo) = ¢

~ From equation (4) = F'(Xo) = ¢. a (Xo)
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= F'(x) = f(xo)a (Xo)

** Xo IS arbitrary we get
F(x) = fx)a(X), Xe (a,b)
Theorem 3.11:
If f is continuous on [a,b] & F(x)= f;f(x)dx then F'(x) = f(x) on [a,b]
Proof:
Given, ‘f is continuous on [a,b] & F(x)= [ f (x)dx.
From part (iii) of theorem 3.10, we get
F(x) = fxa(X) ....... (1)
Let a(x) = X
= a(X)=1& a 7on [a,b]

()= Fx = f(x).1

= F'(x) = f(x) on[a,b]
Theorem 3.12:

[Conversation of Riemann integral of a Product of functions into R-S integral]

If feR & geR on [ab], let F(x)=. f(t)dt, G(x)= [ g(t)dt if xe[a,b]. Then E & G are
continuous functions of bounded variation on [a,b]. Also feR(G)& geR(F) on [a,b], and we
have [ f()g(x)dx = [, f(©)dG(x) = [, g(x)dF (x)

Proof:

Let feR & geR on [a,b]

Let F()= [ f(O)dt & [ g(t)dt if xe[a, b]

Let a(x) = x

Assume that @ 7 on [a,b]
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Then by theorem 3.10 (i)& (ii) we get,
F & G are continuous functions of bounded variation on [a,b]

Also by Theorem 3.4, we get, feR(G)& geR(F) on [a,b] &

[2 F)g()dx = [} F(x)dG(x) = [, g(x)dF(x)
Second Fundamental Theorem of Integral Calculus
Theorem 3.13: [Second Fundamental Theorem of integral calculus]

Assume that feR on [a,b]. Let g be a function defined on [a,b] such that the derivative g’
exists in (a,b) and has the value g’ (x) = f(x) Vxe(a, b). At the end points assume that
g(a+) and g(b—) exist and satisfy g(a) — g(a +) = g(b) — g(b —). Then we have

2 fodx = [0 g'@dx = g(b) - g(@).

Let P={a=x,, x4, ..., X, }€ P[a, b]

~ g is continuous on [a,b] & g’ exists in (a,b) & by Mean-Value Theorem,
9x) = gler—1) = 'O O = X)) ¥V G (Xpmq — Xp) wovneen 1)
For every partition of [a, b] we can write

g(b) — g(a) = Xk_1[g(xi) — g(xx—1)]

= Yk=19"(ti). Ot — x=1) (DY 1)

= k=19 (tx). Axy

= 2R, f(t). Axy

= g(b) — g(a) = L=, f(t). Axy

Given feR = BAeR 3:V € > 0 p, of [a,b] 2:V p finer than p, & t;, €[x)_1,x;], we have
IS(P, f) — Al< & where A= [ f(x)dx

= | Zhoy f(8)-Axy — f fO0)dx| <&

= 19(b) —g@ — [} f)dx| <e
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= |17 Feddx = (gb) - g(@)| < &
> [ f)dx = g(b) - ga)

= [} fdx = [} g'(0)dx = g(b) - 9(@)
Theorem 3.14:

Assume feR on [a,b]. let a be a function which is continuous on [a, b] and whose derivative

a' is Riemann integrable on [a, b]. Then the following integrals exist and are equal
[, fG)da) = [} fOa’ (x)dx.
Proof:

By the Second Fundamental Theorem we get,
a(x) - a(@) = [, a'(t)dt ¥ xe[a,b] ....... (1)
By Theorem 3.12 we get,

[ f0g@ydx = [) f()dGx ... )
Where G(x)= [ g(t)dt

Letg = o’

Then G(x) = [, @’ (t)de

= 6(x) = a(x) — a(a)

= dG(x) = da(x) — da(a)

= dG(x) = da(x) — 0

= dG(x) = da(x)

- equation (2) becomes f; fl)g)dx = f: f(x)dGx

[ FOOa (x)dx = [ f(x)da(x)
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Change of Variance
Theorem 3.15: [(Change of Variable in a Riemann integral)]

Assume that g has a continuous derivative g’ on the interval [c, d]. Let f be continuous on

X

g([c, d]) and define F by the equation F(x) = [

g(c)f(t)dt if xeg([c,d]). Then for each x in

[c,d] the integral fcx[g(t)] g'(t)dt exists and has the value F[g(x)] in particular. We have
e f@dx = [ flg@®]g' @)t

Proof:

Assume that g has a continuous derivative g’ on [c, d]

Let f be continuous on g([c,d])
Define F(x) = f;@ Fodet ifxeg([c,d]) ........... (1)

To Prove: fcxf[g(t)] g'(t)dt = F[g(x)] exists

Here f is continuous on g([c,d])

= By Theorem 3.6, we get fg(d)f(x)dx exists

9
Also f is continuous on g([c, d]) &

g s continuous on [c, d]

= fog is continuous on [c, d]

& also we have g’ is continuous on [c, d]
= (fog).g' is continuous on [c, d]

By Theorem 3.6, we get
[£(Fog) () g'(t)dt exists
(i.e.) fcdf[g(t)] g’ (t)dt exists

Define G on [c, d] as follows:
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6= [} flg®]g' @t ........2)

To Prove: G(x)=F[g(x)]

Now, By first Fundamental Theorem of Integral Calculus
« equation (2) = G'(X)=F[g()]g'(x) ......... (3)
Now, By the chain rule of differentiation, we get
(FlgtD)' =F'(9(x)).g'(x)

= f(9(x)).g'(x) [ = F'(x) = f(x)]

v (Flg) =f(g)g'x) ... (4)

& [6() = F(ge))T' = 6'(x) — [F(g()]
=f(g(0)).g'(x) = f(g(x))g'(x)  (byequation (3) & (4))
v [G(x) = F(g(x)]'=0

= G(x) - F(g(x)) isaconstant

Sup x=c,

Then G(c)= fcdf[g(t)] g'(t)dt=0 (by equation (2) )

& F(g(c)) = fj((cc))f(t)dt =0 (by equation (1))

» G(e) =F(g(e) =0

« Gx)—F(gx)) =0V xelc,d]
= G(x) = F[g(x)] ¥ xelc,d]

In particular, if x =d, then
G(d)—F(g(d) =0

= G(d)=F(g(d))
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(ie). [} Fla®lg'Gdx = [ f(x)dx  y182)

Note: [General Theorem on change of variable in a Riemann integral]

Assume that h eR on [c, d] and if xe[c, d], Let g(x) = f; h(t)dt, where ‘a’ is a fixed point in
[c,d]. Then if feR on g([c,d]), then the integral fcdf[g(t)]h(t)dt exists and we have
[59) FGodx = [ flg@®]h(®adt.

Second Mean- Value Theorem for Riemann Integrals

Theorem 3.16:

Let g be continuous and assume that f 2 on [a,b]. Let A and B be two real numbers satisfying
the inequalities A< f(a+) and B> f(b —). Then there exists a point x,, in [a.b] such that

(i) f;f(x)g(x)dx =A f(f" g(x)dx + B fxbog(x)dx. In particular, if f(x) > 0 Vxe[a, b], we

have (ii) f:f(x)g(x)dx = fob g(x)dx where x, €[a, b] part (ii) is known as Bonnet’s

Theorem.

Proof:

Let ‘g’ be continuous & f 7 on [a,b]

Let A & B be two real numbers 3: A< f(a +) & B> f(b —).

(i) Let a(x) = f:g(t)dt.

= a'(x) = g(x)
Here ‘a’ is continuous & f 7 on [a,b]

Then by second Mean- Value Theorem for R-S integral Theorem7.31, we get
[ fe)da () = f(a) [;° da () + F(b) [, dax (x)

= [, f@a'()dx = f(@) [;° & @dx + f(b) [, @' (x)dx

= f: fG)g()dx = f(a) [° g(x)dx + f(b) fxb,, g(x)dx.

= fff(X)g(x)dx =A f;" g(x)dx + B f:og(x)dx. .......... (1)
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Where A=f(a) & B = f(b)

If A & B are any two real numbers satisfying A< f(a +) & B> f(b +), then we can redefine
the end points a & b to have A=f(a) & B = f(b).

(i)Given f 7 on [a,b]
=Modified ‘f’ is still increasing on [a, b]

Also we know that changing the value of ‘f” at a finite number of points does not affect the

values of a Riemann integral.

Take A=a, we get,

From equation (1) = fabf(x)g(x)dx = B f:og(x)dx.
Riemann — satisfies integrals Depending on a Parameters

Theorem 3.17:

Let f be continuous at each point (x,y) of a rectangle Q= {(x, y) : a<x < bh,c <y <d}.

Assume that « is of bounded variation on [a,b] and Let F be the function defined on [c,d], by

the equation F(y)= fabf(x, y)da (x). Then F is continuous on [c, d]. In other words, if
y.€lc, d]. We have lim f;f(x,y)dax = f; lim f(x,y)da x = f; f(x,y,)da x.

Y=Yo Y—=Yo
Proof:

GivenQ={(x,y):a<x < b,c <y <d}

Let F(y)= [, f(x,p)da (X) oo, (1)
To Prove: F is continuous on [c, d]
Assume that a 7 on [a,b]

~ Q is a compact set, f is uniformly continuous on Q

&

=>Givene >0,36>03:|z—-Z'|<6d=1f(2) - f(2)| < prrSEp

where z= (x,y) & z'= (x',y")e Q.
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= |Z_Z | < é‘ﬁ |f(x,y)_f(x 'y )l < a(b)—a(a)

If |y —y'| <& we have
FO) = FOYI= | [] fGoy)da () = f £y da ()] (by 1)
= [ 1fGoy) = J £ G yDlda (x)

< [21f G y) = fxyDlda (x)

£
a(b)—a(a)

[} da(x)  (byequation (2))

£ [a(b) - a(a)]

“alb)-a(a)

lf ) - < e

(i.e).,Givene > 0,26 >03:|ly—y'| <=2 f(y) - fO)' < ¢
Hence F is continuous on [c, d]

(i.e)., If y,elc,d] , then

b b

= Jim [} fCoy)dax = [ f(x.o)dax
b .. b

= [ }Lrﬁ, fG,y)dax = [ f(x,y,)dax

Jim [7fCoy)dax =[] lim £ y)dax = [} £ (x, o) dax
Theorem 3.18:

If f is continuous on the rectangle [a, b] x [c,d] and if geR on [a,b], then the function F defined

by the equation F(y)= f:g(x)f(x, y)dx, is continuous on [c,d]. That is if y,e[c, d], we have

Jim [} gGOf (xy)dx = [ g(0f (x,yo)dx
Proof:

Given F(y)= [, g()f (x,)dx  .ooe.... (1)

To prove: F is continuous on [c, d]
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Let G(x) = f; g(x)dx

By Theorem 3.12 we get,
[} f)gdx = [} f(x)dG(x)
(ie). J; fGoy)g@)dx = f f(x,y)dG(x)

= F(y) = [ f(x,y)dG(x)
By Theorem 3.17, we get F is continuous on [c, d]

(ie) If yoele,d], lim F(y)=F(y,)

= lim [ g()f (xy)dx = f; gGOf (x,y0)dx
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Unit IV

Infinite Series and infinite Products - Double sequences - Double series -Rearrangement
Theorem for double series - A sufficient condition for equality of iterated series - Multiplication

of series — Cesaro summability - Infinite products.

Power series - Multiplication of power series - The Taylor’s series generated by a function -

Bernstein’s Theorem— Abel’s limit Theorem— Tauber’s theorem.

Infinite series and Infinite Products
Double Sequences:
Definition 4.1:
A function f whose domain is Z* x Z* is called a double sequences.
Definition 4.2:

If acC, we write lim f(p,q) = a and we say that the double sequence f converges to ‘a’,
p,q—)OO

provided that the following condition is satisfied:
For all &> 0 there exist N such that |f(p, q)-a|< € whenever p, g> N
Note:

lim f(p,q) Is call a double limit.
p,q—00

lim lim f(p, q)ls called an iterated limit.

p—oo g™
Theorem 4.3:

Assume that lim f(p, q) = a. For each fixed p. Assume that the lim f(p, q) exists. Then the
D,q—>0 q—o

limit lim ( lim f(p, q)) also exists and has the value ‘a’.
pow  go©

Proof:

lim f(p,q)=a
p.q—o
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= given >0, there exist N1 such that
[t (p, 9)-al<e/2 whenever p, >N+ ............ (1)

Given lim f(p, q) exists
q— 00

Let F(p) = lim f(p,q)
For each p there exist N2 such that,
| F(p) —f (p, q)|< &/2 whenever > N>
For each p> N1 choose N2 and then choose a fixed q greater than both N1 & N>
~ [F(p) - &l = |F(p) - f (p, a) +f (p, 0)-a|
= [F(p)-f (p, 0) [+[f (p. 0)-a
=¢g/2+e/2=¢
IF(P)-al <¢
lim F(p) = a
pow
lim (lim f(p,q))=a
p-oo T oo
Hence the existence of the double limit pl;rfoo f(p,q) and the limit (}Lrg f(p, ) implies the

existence of the iterated limit lim ( lim f(p, q)).
p—)OO q—)OO

Note:

The converse of the above Theorem is not true

_ _pq _ o
Let f(p, q)—pzﬁLq2 (p=1,2,...... =12, )

: — Pd_ _ P _
Then Jm fe. @)= i = i ey

lim f(p,q) =0

A
But when p=q, f(p, q) = = 1/2

p*+p?
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& when p=2q, f(p, q) = ﬁ = % =2/5

(i.e.), The double limit cannot exist in this case.

Double Series

Definition 4.4:

Let f be a double sequence and let S be the double sequence defined by the equation

S(p, A) = X3y Znea (F (M)

The pair (f, s) is called a double series and is denoted by

Lmn(f (m,n) or Xf(m, n)

The double series is said to be converge to the sum ‘a’ if
lim S(p,q)=a

p.q—x

Note:

e Each number f (m, n) is called a term of the double series.
e Each S (p, q) is a partial sum of the double series.
e A double series of positive terms converges if and only if the set of partial term is

bounded. We say Y f (m, n) converges absolutely if
>|f (m, n) [converges
e A double series converges absolutely implies A double series converges.
Rearrangement Theorem for Double series

Definition 4.5:

Let f be a double sequence and let ‘g’ be a one to one function defined on Z* with range Z* x

Z*. Let G be the Sequence defined by G(n) = f[g(n)] if neZ*

Then g is said to be an arrangement of the double sequence f into the sequence G
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Theorem 4.6:

Let Y f (m, n) be a given double series and let ‘g’ be a arrangement of the double sequence f
into the Sequence G. Then

(@) Y.G(n) converges absolutely if and only if Y f(m, n) converges absolutely.

Assume that Y £ (m, n) does converges absolutely with sum S, we have further:

(b) Xr=1 G()=S

(€) X1 f(m,n) &Yr—; f(m,n) both converges absolutely

(d) If An= X021 f(m,n) and Ba= X;_, f(m, n) both series Y An & Y Bn converges
absolutely and both have sum S.

(ie)Xm=1 Zn=1 f(Mn) = X5 Xm=y f(m,n) =S

Proof:

Let > f (m, n) be a given double series

Let ‘g’ be an arrangement of the double sequence f into the sequence G
G(n) =f[g(n)] ifneZ*

a) Let Tx = |G(1)[HGQ)|*........HG(K)]
Let S(p, q) = 251=1 Zgl:l |f(m,n) |

Then, For each k, there exist a pair (p, g) such that T« <S(p, q)

Conversely,

For each pair (p, q), there exist an integer ‘r’ such that S(p, q)< T«

Y'|G(n)| has bounded partial sums if and only if > |f(m, n)| has bounded partial sums.
Y'|G(n)| converges if and only if Y|f (m, n) converges

(i.e.) Y|G(n)| converges absolutely if and only if > |f (m, n) converges absolutely

b) Assume that Y f (m, n) converges absolutely

(i.e.), | f (m, n)| converges with sum S
Let ‘g’ be an arrangement of f (m, n) into G

To prove: Y-, G(n) =S
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First, we shall show that the sum of the series Y G(n) is independent of the function g used to
construct G from f,

Let h be an another arrangement of the double sequence f(m, n) into sequence H
We have, G(n) = f[g(n)] & h(n) = f[h(n)]
Now,

H(n) = f(h(n))

H(h™(n)) =f(h(h™(n)))

H(h™(n) = f(n)

H(h™(g(n))) =f(g(n))

G(n) = f{g(n)] becomes G(n) = H(h-1(g(n)))
G(n) = H(k(n) where k(n) = h.1(g(n))

Now,

We have g: Z*xZ" & h-1: Z* X Z* —Z*
h'leg: Z* x Z*

(i.e.) kis a 1-1 mapping of Z* onto Z*

> H(n) is a rearrangement of > G(n)

SH(n) & Y'G(n) has the same sum

To show that S =S’

Let T= lim S(p,q)
p,q—>oo

Given ¢ > 0, choose N so that

0<IT-S (p, q)|<e/2 whenever p, >N ........... (1)

Lette=XX_, G(n(, S(p,a) =Xh,_, i_, f(mn)

Choose M so that tv includes all terms f(m, n) with 1<m<N-+1 & 1<n<N+1
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Then tw — S (N+1, N+1) is a sum of terms f(m, n) with m>N or n>N

If n> M, we have

[tm —S (N+1, N+1)| < T- S(N+1, N+1) <¢/2  (by equation (1) )
Similarly

S-S (N+1, N+1)] <T - S(N+1,N+1) < /2

Given &>0, we can find M so that |t,-S|<e whenever n> M

= lim tn:S

n—oo

But we have lim t,=S’

n—-o0o
~S=9'
Hence Y-, G(n) =S

c) Each series X;>_; f(m,n) & .>>_; f(m,n) are the sub series of Y G(n).
We have £ G(n) converges absolutely

— Sub series Yo-; f(M, N) & X _; f(m, n) of YG(n) are converges absolutely
(d) Given: Am =X, f(m,n) & Bn = Y-, f(m,n)
To prove: Y. Am & Y B converges absolutely and both have sum S.
we conclude that
> Am converges absolutely & have sum S
> bn converges absolutely & have sum S
Note:
m=1 Zn=1 fm,n)# X2, X, f(mn)
Both the series are "Iterated series”

For example,
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1 ifm=n+112,...
Sup f(m, n)=—1 ifm=n—-1n=12...
0 otherwise

Then Y7oy Yooy f(mn)=1& Y7, Y75, f(mn)=1
Definition 4.7:

Let f be a function whose domain is Z* and whose range is an infinite subset of Z*, and
assume that fis 1-1 on Z*. Let Y.an & Y 'bn be two series such that by = asn) if neZ*. Then Y 'bn

is said to be a subseries of Y an

Theorem 4.8:

If Y an converges absolutely, every subseries b, also converges absolutely. Moreover, we have
| Xn=1 bnl< X5=1 ol < X5sq fadl

Proof:

Given ‘n’, let N be the largest integer in the set {f(1),(2),......f(n)}

Then | X2 , bo|< 2P, [ < 2N_, la <22, lad

k=1 DK 2= [aw

=Y bn converges absolutely

Theorem 4.9:

Let {fi, f2....} be a countable collection of functions, each defined on Z*, having the following

properties

(a) each fris 1-1 on Z*

(b) The range fn(Z") is a subset Qn of Z*

©{QiQ2,. ...... } is a collection of disjoint sets whose union is Z*
Let > an be an absolutely convergent series and define

bk (n)=a ) if neZ*, keZ"

Then,
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VTE”R
(i) For each k, Y.>°_; bk(n) is an absolutely convergent Subseries of > an

(i) If Sk = X7~ bk(n), the series Y.~ Sk converges absolutely and has the same sum as

Dheq Ak
Proof:
Given ) an converges absolutely.
The subseries Y;_; bk(n) also converges absolutely.
To prove, Y7~ Skconverges absolutely & has sum X727, ax
Let tk = |Sa|+Sz|+...... +|Sk
Then
te< Xp=q b(m)}+......+X50, |b(n)|
= 2n=1 (Iba(n)[+ba(n)t......[ok(n)])
= Ln=1 (Ba@lt........ Harkn))
< Y= |al
st <o anl
=Y |Sk| has bounded partial sums
=~y Skconverges
(i.e.) XSk converges absolutely
Now, to prove the sum: Y Sk is Y ax
Let £ >0 be given.
Choose Nsothatn>N =)7_, |ak-2r=q ak/<e/2  .....ooinil. (1)

Choose enough functions fi, f2 ,.....f; so that each term ai,ay,...,an Will appear somewhere in

the sum

Z?{)=1 afl(n)+.....+2ff=1 afr(n)

The number r depends on N & hence on € If n>r & n> N. we have
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|S1+Sa+....+Sn- XEoq ak | San«i|+|an+2|+...<e/2

[S1+Sa+....+Sn- Xpog ak<e/2 Ll 2)
Now,

ey Ak-Dpeg IS 2R ak-Xr=y ok <&/2

Doy aXpeg &l <e2 (3)
From equation (2) & (3) we get

|S1+So+....4Sn- Xk & [<e  if n>r, n>N

~their sum > Skis > ax

The subseries also has the same as the series

A sufficient condition for equality of Iterated Series

Theorem 4.10:

Let f be a complex-valued double sequence. Assume that }.>°_, f(m,n) converges absolutely

for each fixed mand that 35—, Y-, [f(m,n)| converges. Then,
a) The double series }.,,, , f(m,n) converges absolutely

b) The series .,.—, f(m,n) converges absolutely for each "n".

c) Both iterated series Yo, Ym=1 f (Mn)and X;r_; Xo—; f(m,n) converges absolutely and

wehave X7y Yooy f(myn) =37, YXn-: f(mn) =X, f(mn)

Proof:

Let f be a complex-valued double sequence

Assume that).,>_; f(m,n) converges absolutely for all fixed m

&Y X, |f(m,n)| converges.

>y -1 2y f(m,n) converges absolutely

Let 'g' be an arrangement of the double sequence 'f' in to the sequence G.

~G(n) =f[g(n)] if neZ*
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All the partial sums of }'|G(n)| are bounded by Yoo, Y>>, f(m,n)

=~ G(n) converges absolutely
= Xmn (M, n) converges absolutely (by theorem 4.6 (a))
By Theorem 4.6 (c),
m=1 T(m, n) converges absolutely V fixed 'n'.
By Theorem 4.6 (d),

=1 2=y T(mn) & X, Yo, f(m,n) converges absolutely and Y or—; Xp—; f(m,n) =
ne1 Z?)i:l fimn) = Zm,n f(m,n)

Theorem 4.11:

Let Y am and Y bs be two absolutely convergent series with sums A & B, respectively. Let f be

the double sequence defined by the equation

f(m, n) =amby if (m, n) e Z*x Z*

Then f(m, n) converges absolutely and has the sum AB

Proof:

Let > am & Y bn be two absolutely converges series with sums A & B, respectively.

Let f be the double sequence by f(m, n) = ambn if (M, N)e Z* X Z* TP: X, , f(m,n)

converges absolutely & has sum AB
Now, Xm=1 [amlXz=1 100l = 2=y (lamXn=y [bnl)
=Ym=1 Zn=1 |am|[Dn|
Ym=1 lamlXn=q (0ol = 2=y Xnsq [am ol
= The double series 3.,,, , ambn converges absolutely & has the sum AB (by theorem 4.10)

(i.e.),Xmn f(m,n) converges absolutely & has sum AB
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Multiplication of Series:

Definition 4.12:

Given two series Yo, anand Y., bn define

Ch=Xr=o & bnkifn=1,2,....

The series }.;>_, Ch is called the Cauchy product of Y an & > 'bn
Note:

e Yan & Y bn converges absolutely => > Cy, converges and > Ch =3 an) (3.bn)
e This equation may fall to hold if Y an & > bs conditionally convergent
e (i.e.), Yan& Y bn conditionally convergent not implies C, converges

e Ifeither Y ao (or) > bn converges absolutely implies c, converges
Theorem 4.13: [Mertens Theorem]

Assume that Y.>>_, an converges absolutely and has sum A, and suppose Y-, bn converges

with sum B. Then the Cauchy product of these two series converges and has sum AB.
Proof:

Given )°_, an converges absolutely and has sum A & Y3, bn converges with sum B
Let the Cauchy product of Y'an & >'bn be X.77-, Cn and define

Cn=3%_, akbnk ifn=1,2,....

Define An =27 -0 ak & Bn= 270 bk & Cn=27-0 Ck +eevvvnnnnnn ()

Let dn=B-Bn&en=)F-p akbnk  coiiiiiiiinn, 3)

akbn_k lfn = k
Definefa(K)=) 0 ifn<k

Then
Cp = Z'Z:o Z;(lzo ak bn—k

—_ VP
= Zn=o bp_ Xk=0 A
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k=0 %k ZLO bk
= Xhoo an;ko b,
= Yoo WBpk  (by2)
=Xkeo & (B-dpx)  (by3)
=Yh_o aB -Xhr_, axdpk
Co=A;B-ep(byequation(2) &(3))  ......... 4)
It is sufficient to show that e, — 0 as p—
(3) =dr=B-Bn= ¥, bn -7, bx
s~ {dn}—0  (~Y.bn converges)
= {dn} is bounded
=Choose M>0 so that [dn|<M Vn ............ (5)
Let K=33, [an]
Now, {dn}—0 & Y’|as| converges
=Given £ > 0, Choose N so that
n>N = |dn|< &/2K
&n>N=Y> \ . [an<e2M
For p>2N, we can write
3= e = |Z£=0 adp|
= |Zk=0 adok + Xji_yq akdp
< |XN_o axdpk |+ ZP_y.q akdp]
<ePKYN_olal+MXP_\ .. lal (byequation (5) & (6))

< iK +M £
2K 2M
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<g/2+¢/2

Il
™

~lel <&
~ep—0asp —xo
From equation (4) =Cp = ApB - &
=Cp=AB
=Cp —AB as p—xo
(i.e.), the Cauchy product of two series converges and as the sum AB
Definition 4.14: [Dirichlet Product or Dirichlet Convolution]

Given two series Zan & Y 'bn, define Cn = X5/, adbwa (n=1,2....) Where Y4/, means a sum

extended over all positive divisors of 'n' (including i and n). This product > Cy is known as

Dirichlet product.
Note:

Take ao=ho=0 in the Cauchy product Y Cn , Wwhere Cn=%_, akbnx

we get the dirichlet product Y Cn
& Cn = Xg/m adbud

For example,
Ce=aibs+azbs+asb:+asbs
Cr=aibr+arb

Definition 4.15:

A series of the form ).>_; an/n® is called a Dirichlet series.
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Definition 4.16:

Given two absolutely convergent Dirichlet series, say Yo, an/n® and X.;°_; bn/n®, having
sums A(S) & B(S), respectively Then),;>_; Ci/n® = A(S)B(S)

where Cn = X4/, @ bwa is the product of two dirichlet series.

Cesaro Summability:
Definition 4.17:

Let Sn denote the nth partial sum of the series > an and let {on} be the sequence of arithmetic

_S14+Sy#etSp

means defined by on = , If n=1,2,... The series > an is said to be Cesaro Summable

(or) (C,1) summable If {on} converges. lim o,=S, then S is called the Cesaro Sum (or) (C,1)
n—->oo

sum of Y an, and we write > an,= S, (c,1)

Example 4.18:

Letan=Z-1,, |Z|=1, Z#1.

q_1-Z
Then Sy = ai+ax+....... +an = 1+Z+Z7%+....... +71 =
1-z" 1 zn S1+Sy+...+S,
-'-Sn: = & On =i 2 - _n
1-Z 1-Z 1-Z n
1 1 z 1 z? 1 zn
=—|(——— —_———)t+........ H(———
n [(1—2 1—2) T (1—2 1—z) (1—2 1—2)]
_1[ n Z(A+Z+..+Z"h
n-1-7Z 1-Z

1 Z(1-z™)

“On= 1T T na-z)?

I -1 o= C 1
agon=1—7- 0517 ©D
Example 4.19:

Let an = (-1)™. n
Sh=artazt......=1-2+43-4+....
S1=1;82=-1;52=2;S4=-2.......
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{S}={1,-1,2,-2,3,-3...
on = (S1+S2+......+Sp)/n
061=1;062=0;03=2/3;064=0;........
1 if niseven
(i.e.) on=y @t
2— ifnisodd

n

lim on = lim 22 = 1/2 (if nis odd) & lim on=0 ( if n is even)
n—oo n-oo 2n n—oo

Y:anis not (C,1) Summable

3 _{n if nisodd
" |-nifniseven

‘n’ is even

Son = artagt...+tazn

= [143+5+......... +(2n-1)-2[142+....... +n]
= n2-2n(n+1)/2
San=-n
‘n’ 1s odd
Son+r = artazt...... +azn+1
=1-2+3-...... -(2n) + (2n+1)
= -n+(2n+1)
=n+l

Son+1 = N+1

n
2n

= i(51+52+. .. --+SZn-1)+(Sz+S4+_ B --+SZn)
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=1/2n (0) = 0
GZnZO

lim Gn:0

n—oo
(ie), lim inf on,=0
n—oo
_Sl+52+ ..... +Szn+1
m——
2n+1

_ 0+(n+1)
2n+1

n+1
2n+1

O2n+1—

. s n(1+1/n) _
rlll_r& O2m+1 = Al_{go n(2+i/n) 172

lim Sup on=1/2

n—-oo

Theorem 4.20:

If a series is convergent with sum S, then it is also (C,1) summable with Cesaro sum S.
Proof:

Let Y an be a convergent series with sum S.

Let Sn be the n™ partial sum of Yan

let {on} be the sequence of arithmetic means defined by

_ S14S,4--.4Sn
op =——m——F——

(n=1,2,)......
To prove: {on] converges & lim on =S
n—-oo

Let tn = Sn'S & lim Th= Gn's

n—-oo

Then

S1+S;+:-.+Sn
n

Th — Gn'S = S

_ S1+S3+---.+Sn—nS

n
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_ (S1=8)+(S2=8)+-+(Sn=8)
n

_tyttptetty
=
n

To prove: lim t7w=0

n—oo

Given: Y an converges with sum S
The partial sum Snconverges to S
{tn}—0 asn—ow
{tn} is a bounded sequence
Choose A> 0 so that [th)<A  ......... (1)
Also {tn} —0
given £>0, choose N so that
N>Nathl<e ............ (2)

For n>N

- ty+tp+etty

[t n

ti+tot ) NN+t
I |

<| |

B L el ] e L VP o P 1o N Y il Lo
' |

n n
<N.A/n+¢ [by equation (1) & (2)]
(i.e.) Jtn|[<N.A/n+ ¢

lim sup |w|<e
n—-oo

E> 0 is arbitrary, we get

lim |w|=¢

n—-oo

(ie) lim 7,=0
n—-oo

(i.e.), lim on-S=0
n—>o0o
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= lim Gn:S

n—-»oo

> an Is cesaro summable with cesaro sum S.
Note:

If a sequence {Sn} converges, then the sequence {cn} of arithmetic means also converges to
the same limit, (i.e.),{Sn} =S = {on} — S

Note:

Cesaro summability is one of the large class of Summability methods which can be used to

assign a ‘sum' to an ‘infinite series’

Infinite Products:

Definition 4.21:

Given a sequence {un} of real or complex numbers,

Let pr =ui, P2 =, uilz, Pr=wiuz....un [1R=; ug

The ordered pair of sequences ({un}, {Pn}) is called an infinite product (or simply, a product).

The number Py, is called the n partial product and un is called the n™ factor of the product.

The following symbols are used to denote the product
wiuz....un [IR=; ug
Note:

o)

The symbol []5-y+1 un means 15—, un+ .We can write [] un .If {Pn} converges, then the

infinite product, [[;~; un converges

Definition 4.22:

Given an infinite product [, un, let Pn=[1¢=; ux

(a) If infinitely many factors u, are zero, we say the product diverges to zero.

(b) If no factor un is zero, we say the product converges if there exists a number p£0 such that

{Pn} converges un to P. In this case, p is called the value of the product and we write
p=IT7=1 un.
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If {Pn} —o0, we say that the product diverges to ‘0’

(c) If there exists an N such that n> N =un # 0, we say [ [, un converges, provided that
[ un converges as described in (b). In this case, the value of the product [[;-; un is

us,uz,....uN l_[?szH Un
(d) T[Ty un is called divergent if it does not converge as described in (b) or (c)
Note:

e The value of a convergent Infinite product is zero < A finite number of factors are
zero.

e The convergence of an infinite product is not affected by inserting or removing a
finite number of factors, zero or not.

e [I;-; an converges when the limit exists & is not zero. Otherwise [[5-; an

Example 4.23:

n=1(1+ %) &II-1(1 - %) are both divergent.

1 — l l — :E 3 L l =

() Pn= (1+1). (1+2) ....... (1+n) 15 e —- N n+1
.. _12 n— 1_1

(i) Pn= POCRRRP — ==

In this first case P, =n+1 & In the second case Py :%

Theorem 4.24: [Cauchy condition for Products]

The Infinite product [ un converges if and if for every £>0, there exist N such that n>N

=|Un+1.Un+2...... un+k-1] <e for K=1,2,3,...
Proof:

Assume that [T un converges

Assume that no un is zero

Let Pn: U1.U2.....Un & P=1lim Pn

n—-oo

Since, un # 0= Pn 20 =>P+0

~there exist M>0such that [Po>M ... (1)
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Now. {Pn}converges
{Pn} satisfies the Cauchy condition for sequence
given >0, there exist N such that

n>N=>|Pn+k'Pn|< N M. ¢ k:1,2,3 ....... (2)

P —P,

|%l = |Un+1Un+2- ....Un+k '1| """ (*)
n

[Un+1Uns2. ....Unsk -1] = |Pn+§—_Pn|

= |Pn+K_Pn|
[P

<M. eM (by equation (1) & (2) )

|Un+1Un+2 ...... Unsk -1|< & fork=1,2, ......
Conversely,
Assume that for all £>0 there exist N such that
N>N = |Un+1Un+2 . ..... Unsk -1]<€
To prove: [T un converges
Then n>N = u,+0
Sup un=0
From equation (2) = |Un+1Un+2 ...... Unek -1|< €

=[0-1|<e¢

= ¢>1 which is Impossible

S~ U0
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Take e =% 1n 2,
we get [Un+1Un+2 ...... Un+k -1] <§
Let No be the corresponding value of N &
let an = Uno+1UNo+2......un+k 1T N>No
From equation (3) =|uUno+1Uno+2 .....un+k -1|< %
=>[on-1]< 7
1 1
=>-5<0r1<;
1 1
=—+1<Qn<_+1
1 3
=< |anl<; R ()]
If {an} converges, it cannot converge to zero
To show that {qgn} converges
Let € > 0 be given
*) =,|w| <e
dn

[qn+k—anl <

€
[qnl

=|0n+k -On| <€ |qn| <€.3/2  (by equation (4) )
= |Qn+k - On| < 3€/2
{an} satisfies the Cauchy condition for sequences
~{Qgn} converges
~]Tun converges
Note:

Take K=1 in Cauchy condition for Product, we get [ un converges = lim an=0
n—oo
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~ We can write un = 1+an

Thus [[(1+an) converges lim an =0
n—oo

Theorem 4.25:

Assume that each a,>0. Then the product [] (1+an) converges if and only if the series > an

converges
Proof:
Assume that an>0
Let 1+x <e*V X e (1)
Letx>0
When x>0, by Mean-Value Theorem, we get,
[f(x)-(0) = £(x0)(x-0)]
(i.e.)e-e? = (e¥0)'(x — 0), 0<Xo<X
=e*-1 =e*o.x
=e*-1= X.e*0 where 0<Xo<x ......... (2)
We know that
e*o>]
From equation (2) =e*-1 = xe*o
>x.1

el >x
Let Sp=az+a=+...... +an
Pn=(1+a1) (1+ay) ...... (1+an)
Clearly, {Sn} & {Pn} are both increasing

To show that {Sn} bounded above ={Pn} bounded above
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Clearly, a; +ax+.... tan <ai. az.... an

< (1+a1) (1+a2) .....(1+an)
(i.e) Sn<Pa....... 3)
Take x =axto 1, wherek =12, ...... n
1=1l+a<e** k=1,2,...n
(1+ar)(1+az).....(1+an)<e%t.e®............... en
(1+a1)(1+a2).....(1+an)<e®1*dz--+an
S>p'<eSst L 4)
From equation (3) & (4) we get,
{Sn} is bounded <{Pn} is bounded above
{Sn} converges & {Pn} converges.
Yanconverges © [[ (1+an) converges [~{Sn}& {Pn} both increasing]
(i.e.), [T (1+an) converges <Y an converges
Note:
In the above Theorem{Pn} cannot converges to zero
Since each Pp>1
Also Pr—oo if Sy—o0
Definition 4.26:
The product [] (1+an) is said to converge absolutely if [ (1+ |as|) converges
Theorem 4.27:
Absolute convergence of [] (1+an) implies convergence
Proof:

Assume that [ (1+]as]) converges
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To prove: [] (1+an) converges.
Now, [T (1+|an|) converges

By Cauchy Condition for Product Theorem 4.24 we get, V € >0, there exist N such that n>N
=|(1+|an+1])(1+]an+2)). ..... (1+an+k|)-1|< e fork =1,2,....

Now,
|(1+an+1) (1+an+2) ... (L+ans) - 1|
<(1+|an+1])(1+[an+2))...... (1+]an+k|)-1
<|(1+]an+1|)(1+[an+2))...... (1+]an+k|-1]
<¢  (byequation (1))
o |(L+|an+]) (I+]an+2]) -..... (1+|an+k|-1|< & for k=1,2,.....
~[[ (1+an) converges
Note:

e [] (1+|an|) converges if and only if > |as| converges
(i.e.) T (1+an) converges absolutely if and only if Y an converges absolute
Theorem 4.28:

Assume that each a,>0. Then the product [] (1-an) converges if and only if the series Y an

converges.
Proof:

Assume that a,>0

Suppose > an converges

[T (1-an) converges absolutely
=[] (1-an) Converges
Conversely,

Assume [] (1-an) converges
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To prove: ) a,converges

Suppose that > an diverges,

If {an] does not converge to zero, the [ (1-an) also diverges

We may assume that an —0 as n—o
By discarding finitely many terms,
we may assume that a, <1/2 for all n>1

1-a,>1/2 Vn>1
~l-an#0 Vnxl

Let pn = (1-a1) (1-a2) ....... (1-an) and
gn= (1+a1) (1+az) .... (1+an) V n>1
Then
(1-ak) (1+ak) =l-a*<1  (k=1,2,...n)
(1-ax) (1+ax) <1
=pndn<1 V n>1
=pn<1/qn V n>1
=~y ap diverges, then [] (1+an) diverges (by Theorem8.52)
~.(n—00 an n—o0
~1/gh—0 as n—o
(i.e.) pn—0 as n—o0
ey (L-an)diverges to O
~our assumption is wrong

) an converges
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Power Series
Definition 4.29:

An infinite series of the form Y2, a,(z — zy)" ...... (1) is called a power series in z — z,.

Here z,z, and a,,(n = 0,1, ...) are complex numbers.

e With every power series Yo, a,(z — z,)™, there is associated a disk, called the disk
of convergence, such that the series converges absolutely for every z interior to this
disk and diverge for every z outside this disk.

e The centre of the disk is at z,.

e The radius of the disk is called the radius of convergence of the power series. (The

radius may be o or +oo in extreme cases).
Theorem 4.30:

Given a power series Yo a, (z — zo)", let A = lim sup’y/|a,|, r = Z (wherer =0if 1=
n—-oo A

+o00 and r = 40 if A = 0). Then the series converges absolutely if |z — z,| < r and diverges
if |z — z,| > r. Furthermore, the series converges uniformly on every compact subset interior

to the disk of convergence.
Proof:
Given Yo a,(z — z,)™ is a power series.

LetA = 711_{{)10 sup/|a,|

1
Letr—z

First to prove that ), a,(z — z,)™ converges absolutely if |z — zy)| <r and Y a,(z — zy)"

diverges if |z — z,| > r.

1

Now,r—;
1
A=-
r

1
lim sup’/|a,| = "

n—-oo
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-z
11m supi/|a,(z — zy)"| = Ol

By Root test theorem,

Y. a,(z — z,)™ converges absolutely if |z — z,| < r and }; a,(z — z,)™ diverges if |z — z,| >

r.

Let T be a compact subset of the disk of convergence there exists p € T suchthat z € T implies
|z—zol < lp—2zol <7

lan(z — z)"| < lan(p — zo)"| forallz €T

We have |a, (p — z,)™| converges.

Therefore, by Weiestrass M — test, we get

Y. a,(z — zy)™ converges uniformly.

Note:

an

If the limit lim

n—-oo

- exists (or if this limit is +oo) its value is also equal to the radius of
n+1

convergence of X", a,(z — zy)™.

Example 4.31:

The two series Yo, z™ and Y5, (z™ /n?) have the same radius of convergence, namely r =1

On the boundary of the disk of convergence |z — z,| = r, Y-y 2™ converges nowhere and
® = = converges everywhere.

For, Ym0 2™ = Ym0 1(z — O)"

Herea, =1

= lim |l| =1

n-oo 11

Therefore, Radius of convergence of Y7, z" = lim

n—-oo lan+1

AISO Zn 0 z_zn 0 z(Z_ZO)n

1
Here a,, = =

134
Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.




Therefore, radius of convergence of

w 2" _ 1 |an | _ o 1/n? | _ (n_+1)2 o ( 3)2 _
n=0,2 = 1111—13010 ansil rlLl—I)Iolo |1/(n+1)2 - n—r}olo n - rllgrolo 1+ n =1
Example 4.32:

n

Consider the series X5, —

[ee] [ee]
Z z Z
n
n=0 n=0

1
Here a,, = o

(z—-0)"

S

=~ Radius of convergence

1
. a . oy . n+1 . 1
= lim [ = lim |-%| = lim |—|= 11m|1+—|=1
n-oo lan41 n—-oo | — n—oo n n—oo n
n+1
~r=1

By Dirichlet Test theorem , X2, % converge everywhere else on the boundary.

Theorem 4.33:

Assume that the power series Yo, a,(z — z,)™ converges for each z € B(z,; 7). Then the
function ‘f* defined by the equation f(2) = Yo an(z — zo)™, if z € B(zy; 1) is continuous

on B(zy;1).

Proof:

Let f(2) = Yoo an(z — 2o)™ = Y- [u(2) for all z € B(z,; r) where f,(z) = a,,(z — zy)™.
Given that f(z) converges for each z € B(z; 1)

Each point in B(z,; r) belongs to some compact subset of B(zy; ).

Let that compact subset be ‘s’.

W f(2) =200 an(z — zg)™ = Yoo fn(2) converges uniformly on ‘s’ ....... (1) Now, f,,(2) =

a,(z — z,)™ is a polynomial function
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Since every polynomial function is continuous,

'f,/iscontinuousonS  ......... (2

By equation (1) and (2) also using theorem 5.14, we get
‘f> is continuous on every compact subset ‘S’ of B(zy; 1)
Hence ‘f* is continuous on B(zy; 7).

Theorem 4.34:

Assume that Y a,(Z — Z,)" converges if Z € B(Z,;r). Suppose that the equation f(Z) =

w0 an(Z — Z,)™, is known to be valid for each 'Z’ in some open subset 'S’ of B(Z,; r) .Then

for each point Z;in S, there exists a neighbourhood B(Z;; ) € S in which ‘f” has a power series

expansion of the form £ (2) = X5, bi (Z — Z,)F,

where by, = Y (Fan(Zs — Z,)"™*  (k=01.2,..)

Proof:

Assume that ) a,(Z — Z,)™ converges if Z € B(Z,;1) ......... (D
Given: f(Z) =Yyoan(Z—Z,)"isvalidV Z € S < B(Z,;r)

To Prove: V Z, € S, there exists B(Z,;1r) € S

such that £(2) = X5, b (Z — Z1)K,

where by, = Yo (Dan(Zy — Zo)" ™ (k=012,..)

Now, Z € S we have

[ee)

F@) =) anZ=2,)"

n=0

f2) =30 0an(Z —Zy+ 21— Z)" ......... )
= X0 an o () — 20) (21 = Zo)"

n

[« (@+b)" = ) ng,a""b]

r=0

f2) =Yr 020 Cn(k) oo 3)

Where Cy, (k) = { Wond = 20" = 27 i].c k=n
if k>n

Choose R so that B(Z;; R) € S and assume that Z € B(Z;; R)

Claim: Y7 Yr—o Cn (k) converges absolutely
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Now, X770 Xi=o |G ()] = | £ (2)]
= |20 an(Z — Zy + 2, — Z)"| (by(1)
= Y20l an|(1Z = Zy| + |2y — Z, )"
o 20 G =20 | anl(Z, = Z)™ .. @)
Where Z, = Z, + |Z = Z,| + |Z1 — Z,|
Now, |Z, — Z,| = |Z — Z4| + |Z1 — Z,|
<R+1Z,—Z,| (~Z € B(Zy;R))
<r

w|Zy—=Zy| <1
i.e;Z, € B(Z,;1)
s i |l an|(Z, — Z,) Converges  (by equation (1))
(i.e) equation (4) becomes Y. Yr=o | Cn (k)| converges
(i.€) X Xm0 Cn (k) converges absolutely
= By theorem 4.10, We get X0 Y=o Cn (k) = Xi=0 Xm=o Crn (k)
= (3) = f(Z) = X3z Xi=o Cu (k)

= Zi?:o Z?:o Cn (k)

= Yk=o Z?:o(ﬁ)an(z —Z)(Zy — Zy)"
# f(2) = Eieo b (Z — Z1)F,
where by, = Yo (Dan(Zy — Zo)"™*  (k=01.2,..)
Note:
In the course of the proof, we have shown that we may use any R > 0 that satisfies the condition
B(Z;r) S S
Theorem 4.35:
Assume that }; a,,(Z — Z,)™ converges for each Z in B(Z,;r). Then the function ‘f’ defined
by the equation f(Z) = Xy a,(Z —Z,)", if Z € B(Z,;r) has a derivative f'(Z) for each Z
inB(Z,;r),givenby f'(Z) =Yy ona,(Z —Z,)" 1

Proof:
Assume that Y a,,(Z — Z,)™ converges for each Z € B(Z,; 1)
Define ‘f’ by f(Z) = Yroan(Z —Z,)" IfZ € B(Zy;1) ... (1)

To Prove: f(Z) has a derivative f'(Z) such that f'(Z) =Y ona,(Z—-Z2,)"* VZ €
B(Z,;71)
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Assume that Z, € B(Z,;r) if Z € B(Z; R), Z # Z;, We have

f(Z) = Xizo bi(Z — Z1)*, where by, = 30, () an(Zy — Z)™ % ... (2)
Now,
f(Z) =20 bk (Z = Z,)"
=S f(Z)=by(Z—2)° + by (Z — Z)' + X%, b (Z — Z))*
W f(Z)=by+b(Z—Z) + X7 by (Z — ZDF (3)
Now,
bo = Zn-o(5)an(Zy = Z,)"™°  (by equation (2))
> by = Yo L.an(Z; — Z,)"
i.e;by =Ym-oan(Zy —Z)"
= b, = f(Z,) (by equation (1))
2 (3)=f(2) = f(Z) + bi(Z = Z1) + T3y by (Z — Z,)F
= f(2) = f(Z1) = by(Z = Z1) + X% besa (Z — Z,)F
= f(Z) = f(Z) = (Z = Z)[by + Xit=y b1 (Z — Z1)]

2)-f(z o
= D12 _ by + Xg=1 bes1(Z — Zy)k

(Z-241)
L F@D-f(Zy) _ o R
= Jm = —Zlggl[b1+2k=1bk+1(2 Z,)"]

= b,
. — Tim [D-f(Z) _
i.ef'(Z)) = Al_r){)lo Tz b,
Hence f'(Z,) existsand f'(Z,;) = by ............ (4)
Now, (2) becomes by, = Xi_ (R)an (Zy, — Z,)™ "

= by = X (Pan(Zy - Z)"
= by = Ypoinan(Zy — Z,)"

“= f’(Zl) = ;?zlnan(zl - Zo)n_1
~ ‘Zy’ is an arbitrary point of B(Z,; ), then f'(Z) = Yo nay,(Z — Z,)"?
Note: [Hadamard’s Formula]

The radius of convergence of the power series ), a,,(Z — Z,)™ is given by

R.0.C=( lim Supm)_l
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Theorem 4.36:
The power series f(Z) = Yoo an(Z — Z,)™ and the derivative of a power series f'(Z) =
Yo_ina,(Z — Z,)" 1 have the same radius of convergence.
Proof:
Given: £(2) = X0 an(Z — Z,)" and f'(2) = 2oy nan(Z — Z,)*?
Now, f'(Z) =X3-1na,(Z —Z,)""
=y ona,(Z —Z,)" 1!

1

a f1(2) = ﬁz;:;;o nan(Z — Z)" .......... 2)

Clearly, both the series (1) and (2) converge for the same values of ‘Z’

=~ We apply Hadamard formula in (2)

R.O.Cof f'(Z) = (Al_{glo sup’/ Inanl)_1

= (jim swrTaa]) [ hm v = 1
=R.0.Cof f(2)
~ R.O.Cof f'(Z) = R.O.Cof f(2)
Note:
By repeated application of f'(Z) = >°_, na,(Z — Z,)™ 1, we find that for each k = 0,1,2, ...
, the derivative f*(Z) exists in B(Z,; ) and is given by the series
n!

f®(2) = ,?zkman(z —Z )R (D

PutZ =Z, in (1), we get

f®(z,) =k'a, k=012,.. ... (2)

This equation tells us that if two power series Y a,(Z —Z,)"™ and Y. b,,(Z — Z,)™ both
represent the same function in a neighbourhood B(Z,;r) ~a, =b, Vn

i.e.) The power series expansion of a function ‘f’ about a given point Z, is uniquely
p 1Y g P
determined and f(Z) = X0_pa,(Z — Z,)™ becomes f(Z) = ,"fzo}mr(l—!z")(z —-Z,)"™ (by(2))

valid for each Z in the disk of convergence.
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Multiplication of Power Series

Theorem 4.37:

Given two power series expansions about the origin, say

f(2) =X oalz" if zeB(0;7) &g (2) = Y=o bBZ", if zeB(0; R)
Then the product f(z), g(z) is given by the power series

f(2)g(z) = YXy-ocBz",if zeB(0;7) N B(0; R) where c\=).m-, a@bE_0

n=012..)
Proof:
Given f (z) =X, alz", if zeB(0;7r) ...... (1)
g (z) =Xy ,bAz", if zeB(O;R) ...... (2)
Then f (z) = Xy— allz™ converges absolutely (with sum f(z))
& g(z) = X - b@z" converges absolutely (with sum g(z))

The Cauchy product of two series (1) & (2) is
o (E_o aBZbB_B2") = $2_ (Sh, aBbB_B)2"
= Dm—o cBZ"
where c = Y7, allb@_0

Here }»_,a@z" converges absolutely with sum f(z) on B(0;7) and };_, bBz" converges

absolutely with sum g(z) on B(O;R).

Then by Merten’s theorem 4.13,

The Cauchy product Y.°_, cBlz" converges with sum f(z)g(z) on B(0;r) n B(0; R).
(ie) Xp-ocBz" = f(2)g(z) if zeB(0;7) N B(0; R).

Hence f(2)g(z) = Xp-oc@z" if zeB(0;7) N B(0; R)

where ¢l = }»°_,aBbB_A (n=0,1,2,...)
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The Taylor’s series generated by a functlon
Definition 4.38:

Let f be a real-valued function defined on an interval I in R. If f has derivatives of every order

at each point of 1, we write fec® on I
Note:

e If fec™ on some neighborhood of a point c, then the power series

(m
R C NS L (1)
is called the Taylor’s series about ¢ generated by f.

e To indicate that f generates this series, we write

F~ T2, O (e — oy L (2)

n!

e Taylor’s Formula states that if fecco on the closed interval [a,b], then for every xe[a,

b] & for every n, we have

f(x) = XkZo fOZ!(C) (x — )+ X (C) (x—o)™........ (3) , there exists x€[x, c].

e The point x: depends on x,c & onn.

e Hence a necessary and sufficient condition for the Taylor’s series to converge to f(x)

Zoo f( )(C) (x C)n =0......... (4)

e In practlce it may be quite difficult to deal with this limit because of the unknown
position of xi.

e In some cases, however, a suitable upper bound can be obtained for f(x:) and the
limit can be shown to be zero.

e Since i—?—»O as n—oo V n, (4) will hold if there exists

M >0 3:|f™(x)] < M"V x€[a, b].
e In other words, the Taylor’s series of a function f converges if the nth derivative fo

grows go faster than the nth power of some positive integer.

Theorem 4.39

Assume that fec™ on [a, b] and let ce[a, b]. Assume that the is a neighborhood B(C) and a
constant M (which might depend on C) such that |f™ (x)| < M™ for every each x eB(C) N
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[a,b] and every n=1.2,...
2D oy

Proof:

Given, fec® on [a, b] and cela, b]

Then by Taylors formula,

V xela, b] and Vn, we have
0 ©) :
fx) = Zﬁ;éfkk—!(c) (x — o) + fn—(lxl) (x — )", there exists x; € [x,,¢]

L)

Assume that there exists a neighbourhood B(C) and a constant M (depends on C) 3
f™(x)| < MV xe[a, b]

Clearly, x,eB(C) N [a, b] therefore, | f™ (x,)| < M"
= —M" < fM(x,) < M"
= fM™(x) < M™

(n) n
n! n!

We know that, MTT 20asn—>o0o VM

Therefore, by comparison test

M) (
f—(l) —0 as n—»o
n!
M) (4
. f—gl)(x —C)" >0 asn—»w
. n)
That is, fT(,xl) x-0)"=0 ... (2)

) O
Now (1) = lim f(x) = lim Zﬁ;éfk—(c) (x —c)* + lim f—(xl)(x —-o)"
n—»ow n—»o k! n—owo Nl

142

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



o
KKKKKK

= £ = lim SO -k +0 by (2)

(m)
> f@) = X =2 -on

(ie) FOO) = 32,229 (x — o) vxeB(C) N [a,b].

n!
Berstein’s Theorem
Theorem 4.40:

Assume f has a continuous derivative of order n+1 in some open interval | containing c, and
define En (x) for x in | by the equation

F&N(e)
k!

f(X) = Xk=o

(x — ¢)¥ + Eq(X). Then Eq =% G = om0t dt
Proof:

Assume f has a continuous derivative of order n+1 in some open interval I containing ‘c’

Define: E, for x in 1 by f(x) = X7_, f(k:!(c) (x—c)+E(x) (1)

To prove: En :% fcx(x — )™ f" (1) dt
We prove the theorem by induction on n
For n=1

f(k))(c)
k!

Equation (1) = f(x) = X7_, (x — ¢)* + En(X)

f(x) = L2 Q0cc)s Lo ey +Ex(x)

f(x) = f(c)+ £ (c) (- ) + Ex(X)

Ex(X)= f(X)-f(c)- f' (¢) (x - )

E1(9)= [TIf/(8) — £'(c) ]t

E1(x)= [ w(t)dv(t) where u(t) = f' (t)- f (¢) ; V(t) = t-x

E1(X)=u(t)v()]¥ — fcx v(t)du(t) [[ udv = uwv — [vdu]
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E:()=u()v(x) —u(c)v(c) — J] (t - x)f ”(t)dt
E1(X)=[ f (t—x) f"(t) dt

Ex()=[ (x —t) £ (t) dt

The result is true for n=1

Now, we assume that the result is true for ‘n’
(i) En=— [T (x — )£ (1) cl e2)
Now, to prove the result is true for ‘n+1’

. (C9)]
From equation (1) = f(x) = X432 (x — ¢)* +Ena(¥)

(k) (n+1)
00 = Zoo T2 (r = o LD (x = "+ B9

(n+1)!
Envi(0) = () - ST (x = o) - LoD (-
Enea(X) = En(x) - £ ;Hi;” (x — o)™ (by equation (1))
Bt =— [ (x — )" £ (1) dit - 1()) [+ D(x -t dt

Ene == J1 (x = O)MFOD(1) dt - ¥ (x — )™ FD(c) dit

Enet = J1" (x — P[P D(0)-F0D(c)] ot

Ena(¥)= [T u(®)dv(t) where u(t) = fmD(0)-F™D(c) ; dv(t) = (x-t)". dt
Eni(¥)=u(®)v(®)]¥ — [ v(©du(t) [ udv = uv — [ vdu]

Ema(x)== [u()v(x) — u(c)v(c)] - f"%ﬂn”)(t)dt

n+1

[v(t) = =27 du(t) =2 (6)dt]

Evea ()= [0 — 0] — [FZE07 pns2) (1) gy
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Ene1(X)= [ G = o) 2 ()t

(n +1)'
Therefore, the result is true for n+1
Hence En :i fcx(x — )™ (1) dt

Note:

The change of variable t= x+(c-x) u transforms the integral
+
En=— [ (x — )™.f0*D(t) dt to the form E, =E—2— C) [ um 0D (x+(c-x)u) ot
Fort=x+c+x)u  u=—=

dt = 0+(c-x) du

du:£ t c X

:% fcx(x — £)™™D(t) dt becomes

En=— [}’ (x — )" u™ K™D x+(c + x)u) (c-x)dt

E =~ 10 —(x — )" u™ fD( x+(c + X)u)dt

n!
E, =09 ” - [ un (e (c-x)u) dt

Theorem 4.41: [ Bernstein Theorem]

Assume ‘f” and all its derivatives are non-negative on a compact interval [ b, b+r]. Then if b<x<

£ (b) (x

- — b)¥ converges to f(x).

b+r, the Taylor’s series Y5 —,

Proof:

Assume ‘s’ and all its derivatives are non-negative on a compact interval [b, b+r].

£ () (x

k!

To prove: If b<x< b+r, X7, — b)* converges to f(x).
By a translation, we can assume that b=0

. b<x< btr becomes 0<x<r
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The result is trivial for x=0
Assume that 0<x<r

We know that the Taylor’s Formula with remainder

f(x) = Zﬁzof(k;# () +En(X)  ..oo.... (1)
where En=—[*(x —)"f" D) dt ... )

We will prove that the error term satisfied the inequality 0< Ens(f)”+1 f®

Put t=x-xu in (2), we get

_1 rx n+ —
En=—J (x - )™ (1) dt t =X-XUu

En =$ flo(xu)”.f(”*l)(x-xu) (-xdu)

(x)n+1

n!

En= fol u™ f"(x-xu) du v xe [0,1]

Ifx£ 0, let F(x) = 2%

xn+1
n+1
Fn(X) = % fol u™ fMD(x-xu) du
Now, f™D (x-xu) = ™ x(1-u)
< "D r(1-u) if 0 <u<l
[ Since f™*! is monotonic increasing on [0, r] & its derivative non—negative]
% fol u™ fMD(x-xu) < % fol u™ f"D(r-ru) du

Fa(X) <Fn(r) ifO<x<r

(le) En(x)< En(7)

xn+1 - xT+1

(i.e.) En(x) s(é)"+1 E,(r) (3

Put x=r in (1) we get
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(k)
()= Tioo 7k + En(x)

f(r)E En(r)
n+1
~. from equation (3) = En(x) < (f) £

L\t .
Now, Clearly (;) tends to O if O<x<r

X

+1
(;)n . f(r) = 0 as n—»o0 (by Comparison Test)

(9]
from equation (1) = f(x) lim £ x*
n—co !

TR () (

Hence the Taylor series X _, —

x — b) converges to f(x).
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Unit vV

Sequences of Functions — Pointwise convergence of sequences of functions -Examples of
sequences of real - valued functions - Uniform convergence and continuity -Cauchy condition
for uniform convergence - Uniform convergence of infinite series of functions - Riemann -
Stieltjes integration — Non-uniform Convergence and Term-by-term Integration - Uniform
convergence and differentiation - Sufficient condition for uniform convergence of a series -

Mean convergence.

Sequences of functions

Point wise Convergence of Sequences of Functions
Definition 5.1:

Let S be the set. The function f defined by the equation f(x) =lim f, (x) if xeS is called the
n—>oo

limit function of the sequence {f}, and we say that {f,} converges pointwise to 'f* on the set
‘S’.

Examples of Sequences of Real-Valued Functions
Example 5.2:

A sequence of continuous functions with a discontinuous limit function.

2n

Let fy(X) = uan) if xeR, n=1,2,....

Herelim f,, (x) exists for all xeR,
n-oo

0 if|x|<1
The limit function f(x) is given by f(x) =< 1/2 if |x| =1
1 if |x| >1

Each f, is continuous on R, but f is discontinuous at x=1 & x= -1.

Example 5.3:

A Sequence of functions for which lim fol f (0)dx# fol lim f,(x) dx
n—-oo n—oo

Let fa(x) = n2x (1-n)" if xeR, n=1, 2,...
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If 0<x<1, then the limit
£ () =lim f,(x) =0
n—->oo
Af F)dx=0 (ie) ) lim fo(x) dx =0
n—-oo

Now,

1 1
Jy f, (dx=n2f x(I-x)"dx  [x=1-t =t=1-x & dx=-dt = x |0 |1

=nef; (L-t)t"-dt
=nef] (1Ot dt

=nef] ™t

n+1 n+2

J[EntT 2 1
=rf] |
0

—n 1
=N [n+1 n+2:I

— 2[ n+2-n-1 ]
(n+1)(n+2)

n2

= (n+1)(n+2)

S dxE
07 n (n+1)(n+2)

lim [} f @)dx=lim —2

n—oo n-ooo (n+1)(n+2) =
. . 1 _
(i.e) lim N f (0dx=1
. 1 1 ..
Hence lim Jo f (0)dx# N lim £, (x) dx

In other words, the limit of the integral is not equal to the integral of the limit function

=~ The operations of "limit" and integration" cannot always be interchanged.
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Example 5.4:

A sequence of differentiable function {fn} with limit ‘o’ for which {f,,'} diverges.

sin nx

Let fn(X) = NG

if xeR, n=1,2,......

sin nx
=0

Then () = lim f,' () = lim =
Now, £, (X) = \/iﬁ (cos nx). n
= n (cos nx)
~fy" (x) =Vn (cos nx)
rlli_r)glofn'(x) = Ai_r)glo\/n (cos nx)= oo

~lim f;," (x) does not exist for any ‘x’.
n—->oo

(ie){ f'} >

Hence {f,}—0 But {f,’} —o.

Definition of Uniform convergence

Definition 5.5:

A sequence of functions {fn} is said to converge pointwise to ‘f' on a set 'S" if
for all £>0, for all xeS, there exist N(depending on both x & €)such that n> N =|fy(x)-f(x)|<e
Definition 5.6:

A sequence of functions {f,} is said to converge uniformly to 'f' on a set 'S’ if
for all e>0, there exist N(depending only on €)such that n> N
=|fa(X)-f(X)|<e,VxeS

We denote this symbolically by writing f, — f uniformly on S.

Note:

When each term of the sequence { f} is real-valued,
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Then |fn (X) -f(X)|< € becomes

-e<fh(X) <f(x) +¢

(i.e.)for all e>0, there exist N(depending only on €)such that n> N
=1(x)-e< fa(X)<f(x) +¢&,V xS

(i.e.) The entire graph of f, = {(X,y) : y = fa(X), xS} lies within a band of height 2¢ situated
symmetrically about the graph of ‘f’.

Definition 5.7:

A sequence {fn} is said to be uniformly bounded on S if there exists a constant M>0. Such that
[fa(x)<M V xeS & V n. The number M is called a uniform bound for {f.}.

Note (i):

Assume that f,—f uniformly on S and that each f, is bounded on S. Then {f.} is uniformly

bounded on S

Given f,— funiformly on S

V & > 0, there exist N such that n>N = |fy(X) - f(X)|< ¢
= OI-FX)I<[fa(X)-f(X)|<e V xeS
=|f()[-[FX)|<|[fa(X)-f(X)|| <e¢ V xeS

=[f()|-[f(x)[<e

> f)<e (1)
[fO-f)<e 2)
Given, fyis bounded on S

=there exist M1>0 such that [f,(X)<M1 V xS
Equation (2)=[f(X)|< M1 + ¢

Equation (1)= |[fa(X)|<|f(X)|+e < (M1t+€)+e = M1+2e =M where M=M1+2¢

(le) [f(xX)<M V xeS V n
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{fn} is uniformly bounded on S.

Note (ii):

If f-—funiformly on S & each fi, is bounded, then {f,} need not be uniformly converges
Note (iii):

If 'c' is an accumulation point of S, then lim lim f(X) = lim lim f, (X)
C

X—C N—>00 n—oo x—

Uniform Convergence and Continuity
Theorem 5.8:

Assume that f.— f uniformly on S. If each f, is continuous at a point 'c’ of S, then the limit

function 'f' is also continuous at c.

Proof:

Assume that f,—f uniformly on s

=for all >0, there exist N such that n> N =|f,(x)-f(x)|<e/3 for all xeS
Case(i): ‘¢’ is an isolated point on 'S’

By the definition of isolation point, we get
There exist 6>0 such that (c-6,c+6)NS = {c}
Let >0 be given

Let |x-cl<d

To prove that [f(x)-f(c)|< ¢

Now, |X-C|<d

= -0<X-C<0

=C-0<X<C+d

=Xxe(Cc-9,Cc+9)

Also xeS
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~Xe(c-9,c+d)NS = {c}

S X=C

Now, [f(x)-f(c)|=|f(c) - f(c)|= 0 <e.

~ “f* is continuous at 'c’.

Case (ii):

‘c’ is an accumulation point on 'S’

Given: Each f, is continuous at ‘c’

=~ fn is continuous at 'c'.

There exist a neighbourhood B(c) such that xeB(c)NS implies

[X-c|<d =|fn(X)-fn(c)|<e/3 Ll )

Now, [f(x) - f(c)| = |f(x)-fn(X)+fn(X)-fn(c)+fn(C) - f(C)|
< [f(x)-fn(X) |+ (X)-fn(C) |+ (C) - f(C)|
< &l3+¢/3 +¢/3

(by equation (1) & (2))

]
m

~|f(x) - f(c)|< ¢ if xeB(c)NS
o x-c|<d = |f(X)-f(c)| < &
=~ f is continuous at c.

Note: Uniform convergence of {fn} is sufficient but not necessary to transmit continuity from

the individual terms to the limit function.
The Cauchy Condition for Uniform Convergence

Theorem 5.9:

Let {fn} be a sequence of functions defined on a set S. There exists a function ‘f' such that
fo— funiformly on S if and only if the following condition (called the Cauchy Condition) is

satisfied: For every € >0 there exists an N such that m>N & n>N = |fm(X) - fa(X) | <€ V xe S.
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Proof:
Let {fn} be a sequence of functions defined on a set 'S".
Suppose there exist ‘f* such that: fr—f uniformly on S
=for all >0, there exist N such that n> N =|f,(x)-f(x)|<e/2 for all xeS
Now, [fm(X) - fa(X) | = [fm(X) -F(X)+F(X)- fa(X)|
<|fm(X) -f)|H[(x)- fa(x)] < &
<gf2t+e/2=¢
Hence for all £>0, there exist N such that
m>N & n> N =|fm(X)-fn(X)|<e for all xeS
Conversely,
Suppose the Cauchy Condition is satisfied
(i.e.)for every £>0 there exist N such that
m>N & n>N =|fn(X) - fa(x)| <e VxeS ... (1)
To prove that, a function ‘f” such that f, —funiformly on S
From (1), we get
For each xeS, the sequence {fa(X)} converges.
To prove: }liiréo fa(X) = f(x) if xeS
Let >0 be given
Choose N so that
>N [fa(X) - fae(X)| <€/2 VK=1,2,3..... & V xS
7lgrgo [fa(X) - faek(X) = |[fa(X) - f(x)|<e/2 <¢
Hence n>N = |fa(X) -f(x)] <eV x € S.

~fr—funiformly on s
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Note:

e Pointwise and uniform convergence can be formulated in the more general setting of
metric spaces. (i.e.) if f, & f are functions from a non-empty set S to a metric space (T,
dr), we say that fo—f uniformly on S, If for every >0, there exist N (depending only
on €) such that n>N = dt(fa(x), f(x)) < ¢ for all x €S

e Theorem5.8 & 5.9 is valid if S is a metric space also.
Example 5.10:

Consider the metric space (B(S),d) of all bounded real-valued functions on a non-empty set S,
with metric d(f,g)= If-gl where ||ﬂ|=Sl£3 |f ()]
X

Then f,—f'in (B(S), d) & fr—funiformly on S.

(i.e.) ordinary convergence in a metric space (B(S), d) & Uniform convergence on S
Proof:

Suppose fo—f'in (B(S), d)

=V >0, V xe8, there exist N (depending on both x & ¢€) such that

n>N =Ify(x) - fix)l <e

(i.e.) n>N =sup [fa(X) - f(X)| < ¢
XES
=V >0, there exist N (depending only on €) such that
n>N=sup [fa(X) - f(X)|]<e VxeS ...... (1)
XES

We know that [fa(X) - f(x)|< sup [fa(X) - f(X)| (by 1)
XES

<g
=~V ¢ >0, there exist N (depending only on €)such that
n>N=|fa(X)-f(X)|<e V xe S

Hence f, —funiformly on S.
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Similarly, we can prove the converse part alykswo.
Uniform Convergence of Infinite Series of Functions
Definition 5.11:

Given a sequence {f.} of functions defined on a set S.

For each x in S, let Sn(x) = Y%=, fi (x) (n=1,2,.....)

If there exists a function f such that in Sy— f uniformly on S, we say the series Y. f n(X)

converges uniformly on S, and write X7, f,, = f (X) (uniformly on s)
Theorem 5.12:

[Cauchy Condition for Uniform Convergence of Series]

The infinite series Y fn(X) converges uniformly on S, if and only if for every >0 there isan N

such that n>N = |Z}:E+1 fr(x) < £|, for each p=1, 2,... and every x in S.
Proof:

Let {f.} be a sequence of functions defined on S.

Let Sn(¥)= I0_, fi, (X) (n=1,2,...) V x&S

Given, Y fn(x) converges uniformly on s

=there exist a function f such that S, — f uniformly on S

By the Cauchy Condition for Uniform Convergence of the sequence
Theorem 5.9, we get V £>0, there exist N such that n>N

=[Sn+p(X) - Sn(X)| <&, p=1,2,3,....... &V xeS

S fi () - TR fi ()] <&, p=123,....... &V xe$

AN =P R (0 <e,p=123,....... &V xeS

Conversely,

Assume that V >0 there exist N such that
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>N =Y P f ()] <& p=123,......&V xeS

=Zpot fic (0 - Xior i (] <&,

=[Snp(X) - Sa(X)| <&, p=1,2,3,....... &V xeS

Again by Cauchy condition for Uniform Convergence (Theorem 5.9), we get
Sh—funiformly on S

=X fn(X) converges uniformly on S

Theorem 5.13 [Weierstrass M-test]

Let {Mn} be a sequence of non-negative numbers Such that 0<|fy(x)|< Ms for n=1,2, & VxeS.

Then X fn(x) converges uniformly on S if M, converges.

Proof:

Let {f.} be a sequence of functions defined on S

Let Sn(X) = Y=y fk %) (n=1,2,....) V x€S

Let {Mn} be a sequence of non-negative numbers such that

0 fa(x)] <Mnforn=1,2,.. &V xeS

Given: > My converges

To prove: Y fn(X) converges uniformly on S

(i.e.) To prove that there exist a function f, Sp — funiformly on S
=Y Mn converges & by Cauchy Condition for Series

Ve>0 there exist N such that n>N =|Mn+1+Mps2t ......... +Mp+p| <gforp=1,2,....
:~|Z£:f My (x)|<e forp=12,..... .... (1)

Now, Given: 0< [fa(x)|< Mh

[Tt fic GI</ZRl) Mid

<e (by(1))
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'.'|ZE:I; fk (X)|< g, for p= 1527
By Cauchy Condition for Uniform Convergence of series (Theorem 5.12), we get
> fn(x) converges uniformly on s

Theorem 5.14:

Assume that Y fn(X) = f(x) (uniformly on s). If each f, is continuous at a point xo of S, then f is

also continuous at Xo.

Proof:

Let {fn} be a sequence of functions defined on S

Let Sn(X) = Xp=q fik X) (0=1,2,....) & V x€S

Given: fo(x) = f(x) (uniformly on s) = Sy — funiformly on S

=V &>0, there exist N such that n> N = | Sy(X) - f(x)| <e&/3  ...... (1)

Given: Each f, is continuous at xo

=S, IS continuous at Xo

=S Is continuous at Xo

=there exist a neighbourhood B(xo)

xe B(xo)NS=| Sn(X) - Sn(xo)| <e/3 (2)

If xe B(xo)NS, then [f(X) - f(Xo)| = [f(X) - Sn(X) + Sn(X) - Sn(Xo) + Sn(Xo) -f(Xo)|
< (%) - SN(X)|* [Sn(X) - Sn(x0)] + |Sn(Xo) -f(Xo)l
<¢/3 +¢/3 +e/3 (byequation (1) +( 2))
<eg

(i.e.) [f(x) = f(xo)|< €

Hence f is continuous at Xo
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Non-Uniformly Convergent Sequences that can be Integrated Term by Term:

Example 5.15:
Let fa(x) = x" if 0<x<1

. (0 ifo<x<1
Then 1111330 fa(X) —{ 1 ifx=1
=~ fa(X) is a sequence of continuous functions with discontinuous limit
= The convergence of f;(x) is not uniform on [0,1]

Now,

n+1 1

folfn (x)dx = fol x"dx = EF—=—

n+1 _n+1

. 1 . 1
= rlll_l’)l’c}ofo fn(X)dX= 1111_r)r30m=0

~The sequence f, (X) is not uniformly convergent on [0,1] But this sequence fn(x) is uniformly
convergent on every closed sub interval of [0,1] not containing 1.
Definition 5.16:

A sequence of functions {fn} is said to be boundedly convergent on T if { f, } is pointwise

convergent and uniformly bounded on T
Theorem 5.17:

Let {fn} be a boundedly convergent sequence on [a, b]. Assume that each f, eR on [a, b], and
that the limit function feR on [a, b]. Assume also that there is a partition P of [a, b], say P =

{Xo, X1, X2,....xm}, Such that, on every sub interval [c, d] not containing any of the points X,

the sequence {fn} converges uniformly to f. Then we have 1111330 f; fn(t)dt = f: Tlllfgo fn (t)dt
= [, f©at

Proof:

Let { fn} be a boundedly convergent sequence on [a, b]

= { fn } is point wise convergent and uniformly bounded on [a, b].
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Assume each f, e Ron [a, b] and feRon [a, b]

Let p = { Xo,X1,X2,....xm} € P[a,b] such that every subinterval [c,d] not containing any of the

points Xk, the sequence {fn} converges uniformly to ‘f’.
To prove that lim [ @t = lim fn (1) dt= [ F@) de
~+ fis bounded and {fn} is uniformly bounded on [a, b]

There exist M such that [f(x)[<KM V x € [a, b] & |fa (X)|I<M V x €]a, b]

given &>0 such that 2¢ < Ipl

Let h=¢/2M, where m = Number of sub intervals of P
Consider a new partition p' of [a, b] given by

p= {Xo, Xo+h,X1-h,X1+h. ... Xm-1-N,Xm-1,Xm-1+N,Xm-h,Xm}

Now, |f -fol = [f+(-fo) | < [f] + |-fal = [fl+ |fal < M+M (by 1)
[f-fal<2M (2)

Now, f e R & fn € Ron [a, b]

|f-fal € R on [a, b]

~The sum of the integrals of |f-f,l taken over the intervals

[Xo, Xo+h],[X1-h,X1+h],. . ..[Xm-1-N,Xm-1+N], [Xm-h, Xm] 1S

X1+h

L = fl e #7701 = ful doctot S f = fol dx
" f = fal dx

<2M {[X0, Xo+h],[X1-n,X1+h]. . ..[Xm-1-h,Xm-1+h], [Xm-h, Xm]}

=OM {h+2h+2h+.......2h+h}

=2M [2h+2h+...... +2h] (m times)

=2M(2h).m
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=2M(2m)e/2m

=2Mg

x1+h

()7 f = ful dxt U0 f = ful docteee 4 I = ful des2Mee .(3)

The remaining portion of [a, b] (say S) is the union of finite number of closed intervals, in each
of which {fn} is uniformly converges to 'f.

(i.e.), fa—funiformly on S
=there exist an integer N such that n>N =|f(x)-fa(X)| < € VxeS

The sum of the integrals of |f-f| over the intervals of S is

Xo+h

L = fl dxet [0 f = ful doet [T 70 | = £l dc
[0 — ful dx

<e{[X1-h-Xo-h]+[X2-h-X1-h]+.....+[Xm-1-h-Xm-2-h]+[Xm-h-Xm-1-h] }

= & {(-X0-2h)+(-2h)+..... +(-2h)+(xm-2h)}

= & {Xm-Xo-(2h+2h+.....2h) (m times)}

= ¢ {b-a-2h(m)}

= ¢ {b-a-2m.ce/2m}

= ¢ [(b-a)-c}

= & (b-a) - &2

<¢ (b-a)

(L) 0 U = ful et [0 |f = ful doctco 7770 If = ful dx < 2(b-a)

From (3) and (4) we get,

[ 153) - fa(x)ldx < 2Me + g(b-a)
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=& (2M+(b-2))
(i8], [f(x) - fu(x)ldx < = € (2M+(b-a)) where ever n>N
f7 (%) dx = [ f(x) dx as n—soo0
(ie) lim [ fa(x) dx = [T (x) dx = [ lim () dx

Theorem 5.18:(Arzela)

Assume that {f} is boundedly convergent on [a, b] and suppose each f, is Riemann-integrable

on [a, b]. Assume also that the limit function 'f' is Riemann-integrable on [a, b]. Then lim
n—->oo

[P R0 dx= 7 lim fo(x) dx =/ f(x) dx

a a pnSoo a

Example 5.19:

A boundedly convergent sequence {fn} of Riemann- Integrable functions whose limit is not

Riemann- Integrable.

(ie), lim [ fux)dx# [° lim fo(x) dx =f f(x) dx
"’n—>ooan an—>oon “Ja

Let {r, ro...... } be the set of rational numbers in [0,1]

Define f:()={ 01 ;7; ¥ Vie12,

1 if x is rational
0 if x is irrational

f(9{
Clearly, [ fo(x) dx=0V n
Here ‘fy’ converges point wise to f
=~ Each f, has only finitely many points of discontinuity
=~ Each f, is Riemann- Integrable.
But U (P, ) = Y Mk (HAxk

=>" sup(f(X). Axk

=> 1. Axk
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~UPH=1> [ f(x)dx

Similarly, L(P, f) = ¥ M ()Ax«
=Y'inf (f(x). AXk
=3 0. A
=0

> [7, f(x) dx

of o0 dx# [0 F(x) dx

~The limit function f is not Riemann- Integrable.
Uniform Convergence and Differentiation
Note

o {fn} converges uniformly on R. Then {f,’} need not converge (even pointwise) on R
e |ffy —»funiformly on [a,b] & if f,» exists for each n then f' exists & f'n—f" uniformly

on [a b] need not be true.
Theorem 5.20:

Assume that each term of {fn} is a real-valued. function having a finite derivative at each point
of an open interval (a, b) Assume that for at least one point Xo in (a, b) the sequence {f, (Xo0)}
converges. Assume further that there exists a function g such that f's—g uniformly on (a,b).
Then

a) There exists a function f such that f.—funiformly on (a, b).

b) For each x in (a, b) the derivative f'(x) exists and equals g(x).
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Proof:

Assume that each term of {fn} is a real-valued function having a finite derivative at each point
of (a, b)

Given: Atleast one point Xo (a,b), {fa(x0)} converges.  ...... (1)
Given: the exist ‘g’ such that : f'—g uniformly on (a,b)  ....... (2)
(a) there exist as f.—funiformly on (a, b)

Assume that ¢ € (a,b)

Define a new sequence {g,,} as follows.

In(X)=fn(c) .
L B ifx#£c
In(x) ={ x-c fx#e (3)
fn ifx=c

The sequence {g,,} so formed depends on the choice of ‘c’
(3) = gn (©)-f’(c)

(2) ={f,,'(c)} converges

(i.e.) {gn (c)} converges

Claim: {g,,} converges uniformly on (a,b)

Ja(x) =fn(c) _ Jm(xX)—fm(c)

X—c X—C

If x#c, then, g, (X) - gm(X) =

_ )= fm()]=[fn(x)=fm(c)
= gn (%) - gn(x) = -~ :

Let h(x) = fa(X) -fm(X)

agn (X) - gm(x) = 2R@Q )

Now, h(x) = fa(X)-fm(X)
=>h’(xX)=f"n(X)- f'm (X) & W’(x) exists V x €(a,b) ....... (%)
By Mean-Value Theorem,

There exist a point X1 (X, €)
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such that h(x) - h(c) =h"(x1)(x-c)

h(x)=h(c)

=>h' (x1)= P

fia()-f'm ()= gn (X) - gm(x) ... (6) (by(4)and (5))
Given f'n —g uniformly on (a,b)
= given &>0, there exist N such that V n>N =|f'n (X)-g(X)|< &/2 Vxe(a,b)
Let n, m>N.
Then | g (X) - gm(X) [=] f'n(x1)- f'm(x1)]  (by equation (1))
= |f'n(x1) - 9(x1)+g(x1)- f'm(xa)]
< |f'n(*) - gxa)[+] £ m(x1)-g(x1)|
< gl2+¢l2
=g
(i.e) lgn (X) - gm(X)|<e
~{gn} converges uniformly on (a,b)
Now, to prove: {fn} converges uniformly on (a,b)

Let us form the particular sequence {g,} corresponding to the special point c=xo for which

{fn(X)} is assumed to converge.

(X) — Jn ()= fn(x0)

(3) =9n o
=Fa(X)=Fa(X0)+(X-X0) gn (X) V x€ (a,b)

2 £2(X)-Fmn(X)=Fa(X0)+(X-X0) g (X)-Fm(X0)-(X-X0)gm(X)

=Fa(X) -Ffm(X)=[fa(X0)-Fin(X0)]+ (X-X0)[ G ()-Gm(X)]  -.e... (7)
Now, {g,,} converges uniformly on (a,b) & {fn(xo} converges

=given >0, choose N such that for n,m> N

1gn (X)-gm(X)I< &/2]x-Xo| & [fn(X0)-Tm(x0)|<e/2
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=~ equation (7) =|fa(x) -fm(X)|<8/2+|X-X0|.8/2|;(-X0|ER

=el2+e/2=¢
=~ {fn} converges uniformly on (a, b)
b) Let 'c' be an arbitrary point in (a, b)
Let G(x) = rlgrgo Gn(x)
Given f'n exists
Equation (3) = lim g, (X) = g» (C)
(i.e.), Each g, is continuous at ¢
We have {g,} converges uniformly on (a, b)
gn—g converges uniformly on (a, b)
~G is also continuous at ‘c’
(i.e.), }ciiré G(x) = G(c).
For x#c, we have,

fa(X)=fn(c) _ fFO)—-f(C)

X—c X—C

(ie), lim g, ()= lim
n—->oo n—-oo

~lim G(x) =lim £2=1©

X—>C X—C X—C

GE)=f(C) (8)

But also
G(c) =lim g, (¢)
n—-oo

= lim f’n (C)
n-oo

=g(c) [by equation (3)] [+f'n —g uniformly on (a,b)

(ie)GEO)=f" () e (9)

From equation (8) & (9) we get, f'(c) = g(c)

166

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



=~ Cis arbitrary, we get
f'(x) =9(x)
Theorem 5.21:

Assume that each f;, is a real-valued function defined on (a, b) such that the derivative f;,(x)
exists for each x in (a,b). Assume that, for at least one point Xo in (a, b), the series Y f,, (Xo)

converges. Assume further that there exists a function g such that 3 £,"(x) = g(x) (uniformly on
(a, b)). Then

a) There exists a function f such that Y f,, (X) = f(x) (uniformly on (a, b)
b) If xe (a,b), the derivative f’(x) exists and equals Y f,"(X)

Proof:

Define s," (X) = Xk=; fii'(x)V Xxe (a,b) & Sn(xo) = X1 fi' (o)
Given Y £, (X) = g(X) (uniformly on (a,b))

= {S»’} — g(x) (uniformly on (a,b))  ............ (1)
Given fn(xo) converges

= {s,’ (xo)} converges ... (2)
By Theorem 9:13 (a) & by (1) & (2)

There exist f such that: {Sn}— funiformly on (a,b)
=Y fa(X) = f(x) (uniformly on (a, b))

By Theorem 5.20 (b), & by equation (1) & (2)

For each xe(a,b), the derivative f'(X) exists

and equal to g(x)

(ie), f'(x) = gx) = Xf' (¥

167

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



ccccc 2

o

KKKKK 6

Sufficient conditions for Uniform Convergenc; of a Series
Theorem 5.22: [Dirichlet's Test for Uniform Convergence]

Let Fn(x) denote the n partial sum of the series 3 fn(X), where each f, is a complex-valued
function defined on a set S. Assume that {Fn} is uniformly bounded on S. Let {g,} be a
sequence of real-valued functions such that Gn.1(x) < g,, (X) for each x in S and for every
n=1,2,..., and assume that Gn—0 uniformly on S. Then the series > fn(X) g,(X) converges

uniformly on S.
Proof:
Let each f, be a complex-valued function defined on S
Let Fn (X) = X7=; fk(X)
Assume that {Fn} is uniformly bounded on S
There exist M>0 such that
|Fn (x)|<M forall xeS & foralln .......... (1)
Let {g,,} be a sequence of real-valued function such that
Gn+1(x) <g,, (x) for all xeS & for all n=1,2,....
Assume that g, —0 uniformly on S
= given &>0 there exist N such that
n>N = |g,,(X)-0 | <e/2M for all xS
= |gn(X)| <e/2M for all xeS
To prove that: X fa(x) g, (X) converges uniformly on S
Let Sn(X) = X7r=1 fk(X)gk(X)
=Xi=1 [Fe(®) -Fii(x)] gr(x)
=Xk=1 F()Gk(X¥)-Xk=1 Fra(})gk(X)
=3 FO)Gk(X)-2R =1 Fr(X)Gke1(X)-Fn(x)Gns1(X)+Fn(X)Gns1(X)
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=Yk=1 Fk()Gk(X)-2k=1 Fc(X)gk+1(X)

+Fn(x;Gn+1(x)
=Sn(¥)=Lk=1 F)II)- Gera (})]+Fn(X)Gne1(X)
If n>m, we can write
Sn(X) - Sm (X) = Xk=m+1 FCI[Ik(X)-Gkr1(X)]+Fa(X) GN+1.(X)-Frn(X)gm+1(X)
1Sa(%) - Sm ()] =] Zk=m+1 FxCIIK()-Gs1 () ]+F(X) G2 (X)-Fn(X) g1 (X))
M | 2Romsr [9(0)-Gke1()]+Gnea(X)-gmea(X)] by (1)
< M [gme1(X)-GNet (X) +G Nt (X) +gme (X))
< 2Migm+1(X)|
<2M._—
= ¢
(i.e.) Sn(X) - Sm(¥)|< &
= {Sn} converges uniformly on S
« Yfa(X) g (X) converges uniformly on S,

Theorem 5.23: Abel's Test for Uniform Convergence]

Let {g,} be a sequence of real-valued functions Such that g,,+1(x) < g, (X) for each x in T and
foreveryn=1, 2,... If {g,,} is uniformly bounded on T and if } fs(X) converges uniformly on

T, then Y fn (X) g, (X) also converges uniformly on T.
Proof:

Let {g,.} be a sequence of real-valued functions such that
In+1(X)< gn (X) for all xeT & for alln=1,2,......

Given {g,} is uniformly bounded on T

There exist M>0 such that |g,(x)<M forallx €T & V n

Let Fn(X): ZLL:l fk(X)

169

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Given: > fn(x) converges uniformly on T

= {Fn ()} converges uniformlyon T

given €>0, choose N such that for

n,m >N =|Fy(X)-Fm(X)|[<e/M  ......... (2)

Let Sa(x) = Xk=1 fi()gk(X)

To prove: Y fa(X) g, (X) converges uniformly on T

(i.e.) To prove: {Sn(x)} converges uniformly on T

Now, Sn(X) = Xk=1 f(X)g(X)

= Sn (X)=2k=1 [F()-Fia(x)1gk(x)

#[Sn(¥)-Sm(Q =Xk =1 [Fr(¥)-Fra (019k(¥)-2k=1 [Fr(X)-Fra(x)1gk(X)]
=Xk=m+1 [F)-Fiea(})1gk(X)|
<M 2Romsr [FO-Fa(®)]l - (by (1))
=M |(Fm+1(X) - Fm(X) + (Fm+2(X)-Fm+1(X)) +......... +(Fn(X)-Fna(X)|
=M |Fn(X)-Fm(X)| (- by equation (2) )
<M.e/M
=g

(i.e), [Sn(¥)-Sm(X)| < &

={Sn} converges uniformlyon T

= > fn(X) gn(X) converges uniformly on T

Example 5.24:

Let Fo(x) = X0_, e

[Fa(Q)I=[2k=1 €' < 1/lsin(x/2)|

(i.e)|Fn(x)[< 1/]sin(x/2)| V x # 2mm, m= integer
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If 0<o<m, we get,
[Fa(x)|< 1/sin(8/2)  if 6 <x<2m-8
= {Fn} is uniformly bounded on [,2n-3]
Let g,,(x) = 1/n
={g,} —0 uniformly on [3,27-3] if 0<d<n
By Theorem 5.22, we get,
®_, €™/n converges uniformly on [3,27-8] If 0<8<n
Note:

Weierstrass M-Test cannot be used to establish the uniform convergence in the above example,

Since le™|=1.

Mean Convergence:

Definition 5.25:

Let {fn} be a sequence of Riemann-integrable functions defined on [a, b]. Assume that f eR

on [a, b]. The sequence {f.} is said to converge in the mean to fon [a, b], and we write lim fy,=

n—co

fon [a, b] ,if lim [7|a(x) - f(x)Pdx =0
n—-o0o

Note:

Uniform convergence of {f.} to f on [a, b] = mean convergence

(| f(x)- fa(X)| < € for all xe [a, b] :>f: | f(X)- fa(X)[2dx < &2 (b-a)
provided that each f, is Riemann-Integrable on [a, b]

Mean Convergence # Point wise convergence at any point of the interval.

For example,

For each integer n>0, subdivide [0,1] into 2" equal sub interval.

Let T,y denote that sub interval whose right end point is —(k;nl)
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where K=0,1,2,.....2"1

This yields a collection {ly,12,.... } of sub intervals of [0,1], of which the first few are I, = [0,1]
, 12=1[0,1/2] ; 13 =[1/2,1] ; 14=[0,1/4] ; |5 = [1/4,1/2] ;

le = [1/2,3/4] ......
Define fn on [0,1] as follows:

_ 1 ifxel,
f”(x)‘{o if x €[01] - I,

Sincefo1 [fa(X)|? dx is the length of I, & this approaches '0’> as n—oo,

{fn} converges in the mean to ‘0’

But for each xe[0,1] we have

rlgg supfa(X) =1 & ,ll_f?o inf fa(X) =0

~{fa(x) does not converge for any x in [0, 1]

Theorem 5.26:

Assume that 1;11_331 fa~=fon[a, b]. IfgeR on[a, b], define h(x):f(f f(t)g(t)dt, hn(x) :f: f(t)g(t)dt
if xe [a, b]. Then hp—h uniformly on [a, b].

Proof:

Assume lhi; m fa=fon[a, b]

Let geR on [a, b]

Define h(x)= [ f(hg®)dt & ha(x) =f ft)g(t) if xe[a,b]  ......... (1)
To prove: hn—h uniformly on [a, b]

Now, By Cauchy-Schwartz inequality for integrals, we get

0< (S 1 1)~ T Pg@)Idt)><([ | f(x)- fa(x)[2dt).([ lgt)dt) ... )

Now, given {fn} converges in the mean to f
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= given &> 0 there exist N such that
N>N = [ [ fi(t) - (Ot <€A oo, 3)
Where A =/ [g(t)/dt
Ih®-ha(®)] = 1, f)a@)dt -f;; fW(Og(t)dt]
S HORAGIGEN
< [ IfO-F(®llg(t)dt
<(J; 1100- fa0Pd) ™. (J;; lo®Pdt)” (- by(2))
<(f; 1) (P 2.(f) 1g(t) Pty

W (7 lg(Hdt) 2

=€
(i.e.), [h(t)-hna(t)|< &

 hp—h uniformly on [a, b].
Theorem 5.27:

Assume that l.i.m f, = f&l 1 m Gn =g on [a,b]. Define h(x)= f f(t)g(t)dt,

n—-oo

hn (X) :f; fa(t) g, ()d, if xe[a,b]. Then hp—h uniformly on [a, b]
Proof:

Assume that feR & geR on [a,b]

Assume thatl.im f,=f& Li.m g,=gon [ab]
n—-o0o

n—-o0o
Given £>0 there exist N such that
n> N:>ff [fa(t) - ()2 dt < €2/2 & ff |g.(t) -g(t)Rdt<e¥4 ......(1)

Now,l.i.m f,=f & geR on[a b]
n—-oo
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Then by Theorem 5.26, if xe [a, b]

[ fng®dt — [ f(®gtydt uniformlyon[a, b] ... )
Similarly I;LLQ Gn=g & feRon [a, b]

(1) go(®dt — [ f(g(H)dt uniformly on [2,b] ... (3)
By Cauchy-Schwartz inequality, we get,

0< ([ IF-fal.lg-gnldt)’< (f] [f-fodt). (S [g-Gnldt) ... (4)
Now, we can write

fogn- fg = [(F- o) (9- gn)] + [fog-fo] + [fg,-fo]l e Q)
Now,| hn (t)-h ()] = 1 fo(t) gn ()t -f;; F(B)g(t)clt]

=17 [fa(t) gn (O-F(HI(D)]d

< (J,, ol lg-gnldt)+(f; fog dt - [ fg dt)+(f] [fgact - [ fgdt)  (+by5)

< (f [F-Ral2dt)2). ([ |g-gn Pty 2+()] fog dt - g dt)+(f] [fgndt - [ fg dt)
( -~ by equation (4) )

= gl2+¢/2+0+0 (- by equation (1), (2) and (3) )
=g (i.e.), |h(t)-ha(t)|< e

» hp—h uniformly on [a, b]

174

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



Course Material Prepared by

Mrs. S. KALAISELVI M.SC., M.Phil., B.Ed., (Ph.D.)
Assistant Professor of Mathematics,

Sarah Tucker College (Autonomous), Tirunelveli-627007

Tirunelveli District.

175

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education, Tirunelveli.



